Câu hỏi:

30/09/2025 565 Lưu

Cho hình chóp \(S.ABC\)\(SA,{\rm{ }}SB,{\rm{ }}SC\) đôi một vuông góc nhau và \(SA = SB = SC = a\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai vectơ \(\overrightarrow {SM} \)\(\overrightarrow {BC} \) bằng ............

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABC\) có \(SA,{\rm{ }}SB,{\rm{ }}SC\) đôi một vuông góc nhau và \(SA = SB = SC = a\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai vectơ \(\overrightarrow {SM} \) và \(\overrightarrow {BC} \) bằng ............ (ảnh 1)

Ta có \(\cos \left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {SM} .\overrightarrow {BC} }}{{\left| {\overrightarrow {SM} } \right|\left| {\overrightarrow {BC} } \right|}} = \frac{{\overrightarrow {SM} .\overrightarrow {BC} }}{{SM.BC}}\).

\(\overrightarrow {SM} .\overrightarrow {BC}  = \frac{1}{2}\left( {\overrightarrow {SA}  + \overrightarrow {SB} } \right).\left( {\overrightarrow {SC}  - \overrightarrow {SB} } \right)\)

\(\begin{array}{l} = \frac{1}{2}\left( {\overrightarrow {SA} .\overrightarrow {SC}  - \overrightarrow {SA} .\overrightarrow {SB}  + \overrightarrow {SB} .\overrightarrow {SC}  - \overrightarrow {SB} .\overrightarrow {SB} } \right)\\ =  - \frac{1}{2}\overrightarrow {SB} .\overrightarrow {SB}  =  - \frac{1}{2}S{B^2} =  - \frac{{{a^2}}}{2}.\end{array}\).

Tam giác \(SAB\) và \(SBC\) vuông cân tại \(S\) nên \(AB = BC = a\sqrt 2 \). \( \Rightarrow SM = \frac{{AB}}{2} = \frac{{a\sqrt 2 }}{2}\).

Do đó \(\cos \left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = \frac{{ - \frac{{{a^2}}}{2}}}{{\frac{{a\sqrt 2 }}{2}.a\sqrt 2 }} =  - \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = {120^0}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {GA} + \overrightarrow {GC} = 2\overrightarrow {GM} \).                                                                
B. \(\overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow {MN} \).                                
C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).                              
D. \(2\overrightarrow {NM} = \overrightarrow {AB} + \overrightarrow {CD} \).

Lời giải

Cho tứ diện \(ABCD\) có \(M,N\) lần lượt là trung điểm các cạnh \(AC\) và \(BD.\) Gọi \(G\) là trung điểm của đoạn thẳng \(MN.\) Hãy chọn khẳng định sai (ảnh 1)

Ta có: \(\overrightarrow {GA}  + \overrightarrow {GC}  = 2\overrightarrow {GM} \) nên đáp án A đúng.

\(\overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow {MN} \) đúng vì \(\overrightarrow {GB}  + \overrightarrow {GD}  = 2\overrightarrow {GN}  = \overrightarrow {MN} \)

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \vec 0\) đúng vì \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\left( {\overrightarrow {GM}  + \overrightarrow {GN} } \right) = \overrightarrow 0 \).

Đáp án D: \(2\overrightarrow {NM}  = \overrightarrow {AB}  + \overrightarrow {CD} \) sai vì :

\[\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  = \left( {\overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NB} } \right) + \left( {\overrightarrow {CM}  + \overrightarrow {MN}  + \overrightarrow {ND} } \right)\\ = 2\overrightarrow {MN}  + \left( {\overrightarrow {AM}  + \overrightarrow {CM} } \right) + \left( {\overrightarrow {NB}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN}  + \overrightarrow 0  + \overrightarrow 0  = 2\overrightarrow {MN} .\end{array}\]

Lời giải

Cho tứ diện đều\(ABCD\) cạnh \(a\) có \(G\) là trọng tâm của tam giác \(BCD\) và \(I\) là điểm thuộc đoạn thẳng \(AG\) sao cho \(\overrightarrow {AI}  = 3\overrightarrow {IG} \). Các mệnh đề sau đúng hay sai? (ảnh 1)

1. Mệnh đề sai vì \(G\) là trọng tâm của tam giác \(BCD\) nên \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

2. Mệnh đề đúng: Vì

\(\overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow {IG}  + \overrightarrow {GB}  + \overrightarrow {IG}  + \overrightarrow {GC}  + \overrightarrow {IG}  + \overrightarrow {GD}  = 3\overrightarrow {IG}  + \left( {\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right) = 3\overrightarrow {IG} \).

3. Mệnh đề đúng: Vì \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)\(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow {IA}  + 3\overrightarrow {IG}  = \overrightarrow {IA}  + \overrightarrow {AI}  = \overrightarrow 0 \).     

4. .Mệnh đề đúng vì:

\(\overrightarrow {AI}  = 3\overrightarrow {IG}  \Leftrightarrow \overrightarrow {IA}  =  - \frac{3}{4}\overrightarrow {AG} \).

\[\overrightarrow {IB}  = \overrightarrow {IA}  + \overrightarrow {AB}  =  - \frac{3}{4}\overrightarrow {AG}  + \overrightarrow {AB}  =  - \frac{3}{4}.\frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) + \overrightarrow {AB}  = \frac{3}{4}\overrightarrow {AB}  - \frac{1}{4}\overrightarrow {AC}  - \frac{1}{4}\overrightarrow {AD} \].

Câu 4

A.\(\overrightarrow {AC} = \overrightarrow {C'A'} \)                                                                     
B.\(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AC} = \overrightarrow {AA'} \)
C. \(\overrightarrow {AB} = \overrightarrow {CD} \).                                                                 
D.\(\overrightarrow {AB} + \overrightarrow {C'D'} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP