Câu hỏi:

30/09/2025 560 Lưu

Cho hình hộp \[ABCD.A'B'C'D'\]. Xét các điểm \[M,N\] lần lượt thuộc các đường thẳng \[A'C\,,\,C'D\]sao cho đường thẳng \[MN\] song song với đường thẳng \[BD'\]. Khi đó tỉ số \(\frac{{MN}}{{BD'}}\) bằng ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình hộp \[ABCD.A'B'C'D'\]. Xét các điểm \[M,N\] lần lượt thuộc các đường thẳng \[A'C\,,\,C'D\]sao cho đường thẳng \[MN\] song song với đường thẳng \[BD'\]. Khi đó tỉ số \(\frac{{MN}}{{BD'}}\) bằng ………. (ảnh 1)

Đặt \(\overrightarrow {BA}  = \vec x\), \(\overrightarrow {BB'}  = \vec y\), \(\overrightarrow {BC}  = \vec z\).

Do \(\overrightarrow {CM} \), \(\overrightarrow {CA'} \) là hai vectơ cùng phương \( \Rightarrow \exists \,k \in \mathbb{R}:\,\overrightarrow {CM}  = k.\overrightarrow {CA'} \).

Và \(\overrightarrow {C'N} \), \(\overrightarrow {C'D} \) là hai vectơ cùng phương \( \Rightarrow \exists \,h \in \mathbb{R}:\,\overrightarrow {C'N}  = h.\overrightarrow {C'D} \).

Ta có: \[\overrightarrow {BD'}  = \overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BB'}  = \overrightarrow x  + \overrightarrow y  + \overrightarrow z \], (1)

Ta lại có: \(\overrightarrow {MN}  = \overrightarrow {CN}  - \overrightarrow {CM}  = \overrightarrow {CC'}  + \overrightarrow {C'N}  - \overrightarrow {CM}  = \overrightarrow {CC'}  + h.\overrightarrow {C'D}  - k.\overrightarrow {CA'} \)

\( = \overrightarrow y  + h.( - \overrightarrow y  + \overrightarrow x ) - k.\left( {\overrightarrow y  - \overrightarrow z  + \overrightarrow x } \right) = \left( {h - k} \right).\overrightarrow x  + \left( {1 - h - k} \right).\overrightarrow y  + k.\overrightarrow z \), (2)

Do \(MN\parallel B'D\) nên tồn tại t:MN=t.BD'. Từ (1) và (2) ta có\(\left\{ \begin{array}{l}h - k = t\\1 - h - k = t\\k = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = t\\h = 2t\\1 - 3t = t\end{array} \right. \Rightarrow t = \frac{1}{4} \Rightarrow \overrightarrow {MN}  = \frac{1}{4}\overrightarrow {BD'} \).

Vậy \(\frac{{MN}}{{BD'}} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {GA} + \overrightarrow {GC} = 2\overrightarrow {GM} \).                                                                
B. \(\overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow {MN} \).                                
C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\).                              
D. \(2\overrightarrow {NM} = \overrightarrow {AB} + \overrightarrow {CD} \).

Lời giải

Cho tứ diện \(ABCD\) có \(M,N\) lần lượt là trung điểm các cạnh \(AC\) và \(BD.\) Gọi \(G\) là trung điểm của đoạn thẳng \(MN.\) Hãy chọn khẳng định sai (ảnh 1)

Ta có: \(\overrightarrow {GA}  + \overrightarrow {GC}  = 2\overrightarrow {GM} \) nên đáp án A đúng.

\(\overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow {MN} \) đúng vì \(\overrightarrow {GB}  + \overrightarrow {GD}  = 2\overrightarrow {GN}  = \overrightarrow {MN} \)

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \vec 0\) đúng vì \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\left( {\overrightarrow {GM}  + \overrightarrow {GN} } \right) = \overrightarrow 0 \).

Đáp án D: \(2\overrightarrow {NM}  = \overrightarrow {AB}  + \overrightarrow {CD} \) sai vì :

\[\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {CD}  = \left( {\overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NB} } \right) + \left( {\overrightarrow {CM}  + \overrightarrow {MN}  + \overrightarrow {ND} } \right)\\ = 2\overrightarrow {MN}  + \left( {\overrightarrow {AM}  + \overrightarrow {CM} } \right) + \left( {\overrightarrow {NB}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN}  + \overrightarrow 0  + \overrightarrow 0  = 2\overrightarrow {MN} .\end{array}\]

Lời giải

Cho tứ diện đều\(ABCD\) cạnh \(a\) có \(G\) là trọng tâm của tam giác \(BCD\) và \(I\) là điểm thuộc đoạn thẳng \(AG\) sao cho \(\overrightarrow {AI}  = 3\overrightarrow {IG} \). Các mệnh đề sau đúng hay sai? (ảnh 1)

1. Mệnh đề sai vì \(G\) là trọng tâm của tam giác \(BCD\) nên \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

2. Mệnh đề đúng: Vì

\(\overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow {IG}  + \overrightarrow {GB}  + \overrightarrow {IG}  + \overrightarrow {GC}  + \overrightarrow {IG}  + \overrightarrow {GD}  = 3\overrightarrow {IG}  + \left( {\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right) = 3\overrightarrow {IG} \).

3. Mệnh đề đúng: Vì \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)\(\overrightarrow {IA}  + \overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {ID}  = \overrightarrow {IA}  + 3\overrightarrow {IG}  = \overrightarrow {IA}  + \overrightarrow {AI}  = \overrightarrow 0 \).     

4. .Mệnh đề đúng vì:

\(\overrightarrow {AI}  = 3\overrightarrow {IG}  \Leftrightarrow \overrightarrow {IA}  =  - \frac{3}{4}\overrightarrow {AG} \).

\[\overrightarrow {IB}  = \overrightarrow {IA}  + \overrightarrow {AB}  =  - \frac{3}{4}\overrightarrow {AG}  + \overrightarrow {AB}  =  - \frac{3}{4}.\frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right) + \overrightarrow {AB}  = \frac{3}{4}\overrightarrow {AB}  - \frac{1}{4}\overrightarrow {AC}  - \frac{1}{4}\overrightarrow {AD} \].

Câu 4

A.\(\overrightarrow {AC} = \overrightarrow {C'A'} \)                                                                     
B.\(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AC} = \overrightarrow {AA'} \)
C. \(\overrightarrow {AB} = \overrightarrow {CD} \).                                                                 
D.\(\overrightarrow {AB} + \overrightarrow {C'D'} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP