Cho hình hộp \[ABCD.A'B'C'D'\]. Xét các điểm \[M,N\] lần lượt thuộc các đường thẳng \[A'C\,,\,C'D\]sao cho đường thẳng \[MN\] song song với đường thẳng \[BD'\]. Khi đó tỉ số \(\frac{{MN}}{{BD'}}\) bằng ……….
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
![Cho hình hộp \[ABCD.A'B'C'D'\]. Xét các điểm \[M,N\] lần lượt thuộc các đường thẳng \[A'C\,,\,C'D\]sao cho đường thẳng \[MN\] song song với đường thẳng \[BD'\]. Khi đó tỉ số \(\frac{{MN}}{{BD'}}\) bằng ………. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/30-1759239791.png)
Đặt \(\overrightarrow {BA} = \vec x\), \(\overrightarrow {BB'} = \vec y\), \(\overrightarrow {BC} = \vec z\).
Do \(\overrightarrow {CM} \), \(\overrightarrow {CA'} \) là hai vectơ cùng phương \( \Rightarrow \exists \,k \in \mathbb{R}:\,\overrightarrow {CM} = k.\overrightarrow {CA'} \).
Và \(\overrightarrow {C'N} \), \(\overrightarrow {C'D} \) là hai vectơ cùng phương \( \Rightarrow \exists \,h \in \mathbb{R}:\,\overrightarrow {C'N} = h.\overrightarrow {C'D} \).
Ta có: \[\overrightarrow {BD'} = \overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow x + \overrightarrow y + \overrightarrow z \], (1)
Ta lại có: \(\overrightarrow {MN} = \overrightarrow {CN} - \overrightarrow {CM} = \overrightarrow {CC'} + \overrightarrow {C'N} - \overrightarrow {CM} = \overrightarrow {CC'} + h.\overrightarrow {C'D} - k.\overrightarrow {CA'} \)
\( = \overrightarrow y + h.( - \overrightarrow y + \overrightarrow x ) - k.\left( {\overrightarrow y - \overrightarrow z + \overrightarrow x } \right) = \left( {h - k} \right).\overrightarrow x + \left( {1 - h - k} \right).\overrightarrow y + k.\overrightarrow z \), (2)
Do \(MN\parallel B'D\) nên tồn tại . Từ (1) và (2) ta có\(\left\{ \begin{array}{l}h - k = t\\1 - h - k = t\\k = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = t\\h = 2t\\1 - 3t = t\end{array} \right. \Rightarrow t = \frac{1}{4} \Rightarrow \overrightarrow {MN} = \frac{1}{4}\overrightarrow {BD'} \).
Vậy \(\frac{{MN}}{{BD'}} = \frac{1}{4}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

Ta có: \(\overrightarrow {GA} + \overrightarrow {GC} = 2\overrightarrow {GM} \) nên đáp án A đúng.
\(\overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow {MN} \) đúng vì \(\overrightarrow {GB} + \overrightarrow {GD} = 2\overrightarrow {GN} = \overrightarrow {MN} \)
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\) đúng vì \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).
Đáp án D: \(2\overrightarrow {NM} = \overrightarrow {AB} + \overrightarrow {CD} \) sai vì :
\[\begin{array}{l}\overrightarrow {AB} + \overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NB} } \right) + \left( {\overrightarrow {CM} + \overrightarrow {MN} + \overrightarrow {ND} } \right)\\ = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {CM} } \right) + \left( {\overrightarrow {NB} + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} .\end{array}\]
Lời giải

1. Mệnh đề đúng vì \(\left| {\overrightarrow {AB} } \right| = AB = a\).
2. Mệnh đề đúng vì \[\overrightarrow {SA} .\overrightarrow {SB} = \left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {SB} } \right|.\sin \widehat {ASB} = a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{2}\]
3. Mệnh đề sai:
Do \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SN} \) và \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {MB} \).
Suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2\left( {\overrightarrow {SN} + \overrightarrow {AN} } \right)\)(1)
Do \(M\) là trung điểm của \(SA\) nên \(\overrightarrow {NA} + \overrightarrow {NS} = 2\overrightarrow {NM} \Leftrightarrow \overrightarrow {AN} + \overrightarrow {SN} = 2\overrightarrow {MN} \) (2).
Từ (1) và (2) suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2.2.\overrightarrow {MN} = 4\overrightarrow {MN} \).
4. Mệnh đề sai
Gọi \(G\) là trọng tâm tam giác\(ABC\).
Do tứ diện \(SABC\) là tứ diện đều và \(I\) là trọng tâm tứ diện nên \(d\left( {I,\left( {ABC} \right)} \right) = IG\)
Tam giác \(ABC\) đều cạnh \(a\), \(N\)là trung điểm của \(BC\), suy ra \(AN = \frac{{a\sqrt 3 }}{2}\).
Do \(G\) là trọng tâm tam giác\(ABC\) nên \(AG = \frac{2}{3}AN = \frac{{a\sqrt 3 }}{3}\).
Do tứ diện \(SABC\) là tứ diện đều nên \(SG \bot \left( {ABC} \right)\)\( \Rightarrow SG \bot AG\).
Tam giác \(SAG\) vuông tại \(G\) nên \(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{3}} = \frac{{a\sqrt 6 }}{3}\).
Do \(I\) là trọng tâm tứ diện\(SABC\) nên \(IG = \frac{1}{4}SG = \frac{1}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{{12}}\).
Vậy \(d\left( {I,\left( {ABC} \right)} \right) = \frac{{a\sqrt 6 }}{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.