Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;0; - 2} \right),\;B\left( { - 2;3;4} \right),\,C\left( {4; - 6;1} \right)\).
a) Tọa độ trọng tâm G của tam giác là \(\left( {1; - 1;1} \right)\).
b) \(\overrightarrow {AB} = \left( {3; - 3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( { - 3;6; - 3} \right).\)
c) Tam giác \(ABC\)là tam giác cân .
d) Nếu \(ABDC\) là hình bình hành thì tọa độ điểm D là \(\left( {7; - 9; - 5} \right)\).
Trong không gian \(Oxyz\), cho tam giác \(ABC\) với \(A\left( {1;0; - 2} \right),\;B\left( { - 2;3;4} \right),\,C\left( {4; - 6;1} \right)\).
a) Tọa độ trọng tâm G của tam giác là \(\left( {1; - 1;1} \right)\).
b) \(\overrightarrow {AB} = \left( {3; - 3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( { - 3;6; - 3} \right).\)
c) Tam giác \(ABC\)là tam giác cân .
d) Nếu \(ABDC\) là hình bình hành thì tọa độ điểm D là \(\left( {7; - 9; - 5} \right)\).
Quảng cáo
Trả lời:
a) Đúng.
b) Sai .
Do \(\overrightarrow {AB} = \left( { - 3;3;6} \right),\,{\rm{ }}\overrightarrow {AC} = \left( {3; - 6;3} \right).\)
c) Đúng.
Do \(AB = AC = 3\sqrt 6 \) nên tam giác \(ABC\) cân tại A.
d) Sai.
Gọi \(D\left( {x;y;z} \right)\), vì \(ABDC\) là hình bình hành nên
\(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow \left( { - 3;3;6} \right) = \left( {x - 4;y + 6;z - 1} \right) \Leftrightarrow \left( {x;y;z} \right) = \left( {1; - 3;7} \right)\) .
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \[H\] là hình chiếu vuông góc của \[A\left( {1;2;3} \right)\] lên \[Oy\]. Suy ra \[H\left( {0;2;0} \right)\]
Khi đó \[H\] là trung điểm đoạn \[AA'\].
\(\left\{ \begin{array}{l}{x_{A'}} = 2{x_H} - {x_A} = - 1\\{y_{A'}} = 2{y_H} - {y_A} = 2\\{z_{A'}} = 2{z_H} - {z_A} = - 3\end{array} \right.\)\( \Rightarrow A'\left( { - 1;2; - 3} \right)\).
Câu 2
Lời giải
![Trong không gian \[Oxyz\], cho hình hộp \(ABCD.A'B'C'D'\) có \(A\left( {1;\,0;\,1} \right)\), \(B\left( {2;\,1;\,2} \right)\), \(D\left( {1;\, - 1;\,1} \right)\). Tính tọa độ đỉnh \(C\) của hình hộp. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/12-1759301074.png)
Vì \(ABCD\) là hình bình hành nên
\(\overrightarrow {AB} = \overrightarrow {DC} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} - {x_A} = {x_C} - {x_D}\\{y_B} - {y_A} = {y_C} - {y_D}\\{z_B} - {z_A} = {z_C} - {z_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 2\\{y_C} = 0\\{z_C} = 2\end{array} \right. \Rightarrow C(2;0;2)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
