Câu hỏi:

01/10/2025 714 Lưu

Người ta đo đường kính của 61 cây gỗ được trồng sau 12 năm (đơn vị: centimét), họ thu được bảng tần số ghép nhóm sau:\([30;35)\)

Đường kính

\([20;25)\)

\([25;30)\)

 

\([35;40)\)

\([40;45)\)

Số cây

4

12

26

13

6

a) Số cây có đường kính từ 20 cm đến dưới 30 cm là 16 cây.

b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 25 cm.

c) Để chọn ra 50% các cây gỗ có đường kính lớn nhất thì ta nên chọn các cây gỗ có đường kính (làm tròn đến hàng phần trăm) từ \(32,79\;{\rm{cm}}\)trở lên.

d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần trăm) là 6,75 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bảng tần số ghép nhóm của mẫu số liệu trên như sau:

Đường kính

\([20;25)\)

\([25;30)\)

\([30;35)\)

\([35;40)\)

\([40;45)\)

Giá trị đại diện

22,5

27,5

32,5

37,5

42,5

Số cây

4

12

26

13

6

Tần số tích luỹ

4

16

42

55

61

a) Đúng. Số cây có đường kính từ 20 cm đến dưới 30 cm là 16 cây.

b) Đúng. Khoảng biến thiên của mẫu số liệu là \[45 - 20 = 25.\]

c) Đúng. Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{2} = \frac{{61}}{2} = 30,5\] là nhóm \([30;35)\)

Ta có: \[{Q_2} = 30 + \frac{{30,5 - 16}}{{26}}.5 \approx 32,79.\]

Vậy để chọn ra 50% các cây gỗ có đường kính lớn nhất thì ta nên chọn các cây gỗ có đường kính (làm tròn đến hàng phần trăm) từ \(32,79\;{\rm{cm}}\)trở lên.

d) Đúng. Nhóm \([25;30)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{61}}{4} = 15,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 25 + \frac{{15,25 - 4}}{{12}}.5 = \frac{{475}}{{16}}.\]

Nhóm \([35;40)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = 45,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 35 + \frac{{45,75 - 42}}{{13}}.5 = \frac{{2368}}{{65}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{7013}}{{1040}} \approx 6,75.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bảng tần số ghép nhóm của mẫu số liệu trên như sau:

Cân nặng \(\left( {kg} \right)\)

\([1,0;1,1)\)

\([1,1;1,2)\)

\([1,2;1,3)\)

\([1,3;1,4)\)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con giống A

8

28

32

17

Tần số tích luỹ

8

36

68

85

 

Cân nặng \(\left( {kg} \right)\)

\([1,0;1,1)\)

\([1,1;1,2)\)

\([1,2;1,3)\)

\([1,3;1,4)\)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con giống B

13

14

24

14

Tần số tích luỹ

13

27

51

65

a) Sai. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với giống B là \[1,4 - 1 = 0,4\;{\rm{kg}}{\rm{.}}\]

b) Đúng. Cân nặng trung bình của giống \({\rm{B}}\) là: \({\overline x _B} = \frac{{13.1,05 + 14.1,15 + 24.1,25 + 14.1,35}}{{65}} = 1,21\;{\rm{kg}}{\rm{.}}\)

c) Đúng. Cân nặng trung bình của giống A là: \({\overline x _A} = \frac{{8.1,05 + 28.1,15 + 32.1,25 + 17.1,35}}{{85}} \approx 1,22\;{\rm{kg}}{\rm{.}}\)

Vậy cân nặng trung bình của giống A lớn hơn cân nặng trung bình của giống     

d) Sai.

Giống A:

Nhóm \([1,1;1,2)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{85}}{4} = 21,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{21,25 - 8}}{{28}}.0,1 = \frac{{257}}{{224}}.\]

Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.85}}{4} = 63,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{63,75 - 36}}{{32}}.0,1 = \frac{{1647}}{{1280}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{1249}}{{8960}} \approx 0,14.\]

Giống B:

Nhóm \([1,1;1,2)\)là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{65}}{4} = 16,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{16,25 - 13}}{{14}}.0,1 = \frac{{629}}{{560}}.\]

Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.65}}{4} = 48,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{48,75 - 27}}{{24}}.0,1 = \frac{{413}}{{320}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{75}}{{448}} \approx 0,17.\]

Nếu so sánh theo khoảng tứ phân vị thì giống B có cân nặng đồng đều hơn giống       

Lời giải

Chọn C

Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là:

40 – 15 = 25 (phút).

Trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: 30 – 20 = 10 (phút).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(15,5\).                   
B. \(13,5\).                
C. \(15,3\).          
D. \(13,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP