Câu hỏi:

01/10/2025 100 Lưu

Kết quả điều tra về số giờ làm thêm trong 1 tuần của một nhóm sinh viên được cho ở bảng sau

A graph with numbers and a bar

Description automatically generated with medium confidence

a) Có 32 học sinh làm thêm từ 2 giờ đến dưới 4 giờ trong một tuần.

b) Thời gian làm việc trung bình của nhóm sinh viên trong một tuần là \(6,94\) giờ.

c) Số sinh viên làm thêm trong một tuần (làm tròn đến hàng phần trăm) xấp xỉ \(7,03\) giờ là nhiều nhất.

d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên (làm tròn đến hàng phần trăm) là \[3,21.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bảng tần số ghép nhóm của mẫu số liệu trên như sau:

Số giờ làm thêm

\[\left[ {2;{\rm{ }}4} \right)\]

\[\left[ {4;{\rm{ }}6} \right)\]

\[\left[ {6;{\rm{ }}8} \right)\]

\[\left[ {8;{\rm{ }}10} \right)\]

\[\left[ {10;{\rm{ }}12} \right)\]

Giá trị đại diện

3

5

7

9

11

Số sinh viên

12

20

37

21

10

Tần số tích luỹ

12

32

69

90

100

a) Đúng.

b) Đúng. Số trung bình của mẫu số liệu trên là

\(\overline x  = \frac{{3.12 + 20.5 + 37.7 + 21.9 + 10.11}}{{100}} = 6,94.\)

c) Nhóm chứa mốt của mẫu số liệu trên là nhóm [6; 8).

Do đó: \({u_m} = 6;\;{n_{m - 1}} = 20;\;{n_m} = 37;\;{n_{m + 1}} = 21;\;{u_{m + 1}} - {u_m} = 8 - 6 = 2.\)

Mốt của mẫu số liệu ghép nhóm là \({M_0} = 6 + \frac{{37 - 20}}{{\left( {37 - 20} \right) + \left( {37 - 21} \right)}}.2 = \frac{{232}}{{33}} \approx 7,03.\)

d) Sai. Nhóm \(\left[ {4;6} \right)\) chứa TPV thứ nhất nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là \({Q_1} = 4 + \frac{{\frac{{100}}{4} - 12}}{{20}}.\left( {6 - 4} \right) = 5,3.\)

Tứ phân vị thứ ba phân vị thứ ba của mẫu số liệu ghép nhóm trên là

\({Q_3} = 8 + \frac{{\frac{{3.100}}{4} - \left( {12 + 20 + 37} \right)}}{{21}}.\left( {10 - 8} \right) = \frac{{60}}{7}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên (làm tròn đến hàng phần trăm) là \[3,27.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bảng tần số ghép nhóm của mẫu số liệu trên như sau:

Đường kính

\([20;25)\)

\([25;30)\)

\([30;35)\)

\([35;40)\)

\([40;45)\)

Giá trị đại diện

22,5

27,5

32,5

37,5

42,5

Số cây

4

12

26

13

6

Tần số tích luỹ

4

16

42

55

61

a) Đúng. Số cây có đường kính từ 20 cm đến dưới 30 cm là 16 cây.

b) Đúng. Khoảng biến thiên của mẫu số liệu là \[45 - 20 = 25.\]

c) Đúng. Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{2} = \frac{{61}}{2} = 30,5\] là nhóm \([30;35)\)

Ta có: \[{Q_2} = 30 + \frac{{30,5 - 16}}{{26}}.5 \approx 32,79.\]

Vậy để chọn ra 50% các cây gỗ có đường kính lớn nhất thì ta nên chọn các cây gỗ có đường kính (làm tròn đến hàng phần trăm) từ \(32,79\;{\rm{cm}}\)trở lên.

d) Đúng. Nhóm \([25;30)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{61}}{4} = 15,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 25 + \frac{{15,25 - 4}}{{12}}.5 = \frac{{475}}{{16}}.\]

Nhóm \([35;40)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = 45,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 35 + \frac{{45,75 - 42}}{{13}}.5 = \frac{{2368}}{{65}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{7013}}{{1040}} \approx 6,75.\]

Lời giải

Bảng tần số ghép nhóm của mẫu số liệu trên như sau:

Cân nặng \(\left( {kg} \right)\)

\([1,0;1,1)\)

\([1,1;1,2)\)

\([1,2;1,3)\)

\([1,3;1,4)\)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con giống A

8

28

32

17

Tần số tích luỹ

8

36

68

85

 

Cân nặng \(\left( {kg} \right)\)

\([1,0;1,1)\)

\([1,1;1,2)\)

\([1,2;1,3)\)

\([1,3;1,4)\)

Giá trị đại diện

1,05

1,15

1,25

1,35

Số con giống B

13

14

24

14

Tần số tích luỹ

13

27

51

65

a) Sai. Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với giống B là \[1,4 - 1 = 0,4\;{\rm{kg}}{\rm{.}}\]

b) Đúng. Cân nặng trung bình của giống \({\rm{B}}\) là: \({\overline x _B} = \frac{{13.1,05 + 14.1,15 + 24.1,25 + 14.1,35}}{{65}} = 1,21\;{\rm{kg}}{\rm{.}}\)

c) Đúng. Cân nặng trung bình của giống A là: \({\overline x _A} = \frac{{8.1,05 + 28.1,15 + 32.1,25 + 17.1,35}}{{85}} \approx 1,22\;{\rm{kg}}{\rm{.}}\)

Vậy cân nặng trung bình của giống A lớn hơn cân nặng trung bình của giống     

d) Sai.

Giống A:

Nhóm \([1,1;1,2)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{85}}{4} = 21,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{21,25 - 8}}{{28}}.0,1 = \frac{{257}}{{224}}.\]

Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.85}}{4} = 63,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{63,75 - 36}}{{32}}.0,1 = \frac{{1647}}{{1280}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{1249}}{{8960}} \approx 0,14.\]

Giống B:

Nhóm \([1,1;1,2)\)là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{n}{4} = \frac{{65}}{4} = 16,25\] nên chứa tứ phân vị thứ nhất. Ta có: \[{Q_1} = 1,1 + \frac{{16,25 - 13}}{{14}}.0,1 = \frac{{629}}{{560}}.\]

Nhóm \([1,2;1,3)\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \[\frac{{3n}}{4} = \frac{{3.65}}{4} = 48,75\] nên chứa tứ phân vị thứ ba. Ta có: \({Q_3} = 1,2 + \frac{{48,75 - 27}}{{24}}.0,1 = \frac{{413}}{{320}}.\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[\Delta Q = {Q_3} - {Q_1} = \frac{{75}}{{448}} \approx 0,17.\]

Nếu so sánh theo khoảng tứ phân vị thì giống B có cân nặng đồng đều hơn giống       

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(15,5\).                   
B. \(13,5\).                
C. \(15,3\).          
D. \(13,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP