Câu hỏi:

02/10/2025 7 Lưu

Trong không gian tọa độ \(Oxyz\), cho hình bình hành \(ABCD\). Biết \(A = \left( { - 1;0;2} \right)\), \(B\left( {1; - 1;3} \right)\), \(C\left( {1;4;2} \right)\). Toạ độ điểm \(D\)

A. \(\left( {1;5; - 1} \right)\).                          
B. \(\left( { - 1; - 5;1} \right)\).          
C. \(\left( {1; - 5;1} \right)\).                                   
D. \(\left( { - 1;5;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi toạ độ điểm \(D\left( {x;y;z} \right)\). Theo tính chất hình bình hành ta có: \(\overrightarrow {AB}  = \overrightarrow {DC} \)

\(\overrightarrow {AB}  = \left( {2; - 1;1} \right)\),  \(\overrightarrow {DC}  = \left( {1 - x;4 - y;2 - z} \right)\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2 = 1 - x}\\{ - 1 = 4 - y}\\{1 = 2 - z}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x =  - 1}\\{y = 5}\\{z = 1}\end{array}} \right.} \right.\)

Vậy \(D\left( { - 1;5;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

b) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

c) Sai. Chọn \(\overrightarrow a  = \left( {1\,;\,1\,;\,0} \right)\), \(\overrightarrow b  = \left( {0\,;\,1\,;\,1} \right)\), \(\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\).

Khi đó \(\overrightarrow a .\overrightarrow b  = 1 \Rightarrow \left( {\overrightarrow {a.} \overrightarrow b } \right).\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\) và \(\overrightarrow b .\overrightarrow c  = 1 \Rightarrow \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right) = \left( {1\,;\,1\,;\,0} \right)\).

Suy ra : \(\left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c  \ne \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right)\)

d) Đúng: Từ định nghĩa của tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\), ta suy ra \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\]

Lời giải

a) Sai.\[\overrightarrow a \overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\]\[ = 2.3.\cos {60^0}\]\[ = 3\].

b) Đúng. \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\overrightarrow a ^2} + 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\).

\( = {\overrightarrow a ^2} + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\).

\( = {2^2} + 2.2.3.\cos 60^\circ  + {3^2} = 19\).

\( \Rightarrow \left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {19} \).

c) Đúng. \({\left| {\overrightarrow a  - \overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\)

\( = {2^2} - 2.2.3.\cos 60^\circ  + {3^2} = 4 - 6 + 9 = 7\)

\( \Rightarrow \left| {\overrightarrow a  - \overrightarrow b } \right| = \sqrt 7 \).

d) Sai. \({\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 4\overrightarrow {a.} \overrightarrow b  + 4{\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 4\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\overrightarrow b ^2}\)

\( = {2^2} - 4.2.3.\cos 60^\circ  + {4.3^2} = 28\)

\( \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {28} .\)

Câu 7

A. \(\vec v\left( {3; - 1;3} \right)\).              
B. \(\vec v\left( {3; - 3;3} \right)\).                      
C. \(\vec v\left( {3; - 3;6} \right)\).                    
D. \(\vec v\left( { - 3;3; - 6} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP