Câu hỏi:

02/10/2025 17 Lưu

Trong không gian tọa độ \[Oxyz\], cho hai vectơ \(\vec a\) và \[\overrightarrow b \] thỏa mãn \(\left| {\overrightarrow a } \right| = 2,\,\,\left| {\overrightarrow b } \right| = 3\) và \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 60^\circ \).

a) \[\overrightarrow a \overrightarrow b  = \sqrt 3 \].

b) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {19} \).

c) \(\left| {\overrightarrow a  - \overrightarrow b } \right| = \sqrt 7 \).

d) \(\left| {\overrightarrow a  - 2\overrightarrow b } \right| = 28\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.\[\overrightarrow a \overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\]\[ = 2.3.\cos {60^0}\]\[ = 3\].

b) Đúng. \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\overrightarrow a ^2} + 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\).

\( = {\overrightarrow a ^2} + 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\).

\( = {2^2} + 2.2.3.\cos 60^\circ  + {3^2} = 19\).

\( \Rightarrow \left| {\overrightarrow a  + \overrightarrow b } \right| = \sqrt {19} \).

c) Đúng. \({\left| {\overrightarrow a  - \overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 2\overrightarrow {a.} \overrightarrow b  + {\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\)

\( = {2^2} - 2.2.3.\cos 60^\circ  + {3^2} = 4 - 6 + 9 = 7\)

\( \Rightarrow \left| {\overrightarrow a  - \overrightarrow b } \right| = \sqrt 7 \).

d) Sai. \({\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\overrightarrow a ^2} - 4\overrightarrow {a.} \overrightarrow b  + 4{\overrightarrow b ^2}\)

\( = {\overrightarrow a ^2} - 4\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + 4{\overrightarrow b ^2}\)

\( = {2^2} - 4.2.3.\cos 60^\circ  + {4.3^2} = 28\)

\( \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {28} .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta đặt \[A(a;0;0)\],\[B(0;b;0)\],\[C(0;0;c)\].

\[\overrightarrow {SA}  = (a - 1; - 2; - 3)\]; \[\overrightarrow {SB}  = ( - 1;b - 2; - 3)\]; \[\overrightarrow {SC}  = ( - 1; - 2;c - 3)\].

Vì \(SA\), \(SB\), \(SC\) đôi một vuông góc nên

\[\left\{ \begin{array}{l}\overrightarrow {SA}  \bot \overrightarrow {SB} \\\overrightarrow {SB}  \bot \overrightarrow {SC} \\\overrightarrow {SA}  \bot \overrightarrow {SC} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {SB}  = 0\\\overrightarrow {SB} .\overrightarrow {SC}  = 0\\\overrightarrow {SA} .\overrightarrow {SC}  = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a + 2b = 14\\2b + 3c = 14\\a + 3c = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = \frac{7}{2}\\c = \frac{7}{3}\end{array} \right.\].

Do \(SA\), \(SB\), \(SC\) đôi một vuông góc, nên: \({V_{SABC}} = \frac{1}{6}SA.SB.SC = \frac{1}{6}.7.\frac{7}{2}.\frac{7}{3} = \frac{{343}}{{36}}\).

a)  Sai.

b)  Đúng.

c)  Sai.

d)  Đúng.

Lời giải

a) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

b) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

c) Sai. Chọn \(\overrightarrow a  = \left( {1\,;\,1\,;\,0} \right)\), \(\overrightarrow b  = \left( {0\,;\,1\,;\,1} \right)\), \(\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\).

Khi đó \(\overrightarrow a .\overrightarrow b  = 1 \Rightarrow \left( {\overrightarrow {a.} \overrightarrow b } \right).\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\) và \(\overrightarrow b .\overrightarrow c  = 1 \Rightarrow \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right) = \left( {1\,;\,1\,;\,0} \right)\).

Suy ra : \(\left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c  \ne \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right)\)

d) Đúng: Từ định nghĩa của tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\), ta suy ra \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\]