Câu hỏi:

02/10/2025 15 Lưu

Trong không gian tọa độ \[Oxyz\], cho \(S\left( {1;2;3} \right)\) và các điểm \(A\), \(B\), \(C\) thuộc các trục \(Ox\), \(Oy\), \(Oz\) sao cho hình chóp \(S.ABC\) có các cạnh \(SA\), \(SB\), \(SC\) đôi một vuông góc với nhau.

a)  Tam giác \(ABC\) là tam giác vuông.

b)  \(\overrightarrow {SB} .\overrightarrow {SC}  = 0\).

c)  Tọa độ điểm \(C\) là \(C\left( {0;0;7} \right)\).

d)  Thể tích khối chóp \(S.ABC\) bằng \(\frac{{343}}{{36}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta đặt \[A(a;0;0)\],\[B(0;b;0)\],\[C(0;0;c)\].

\[\overrightarrow {SA}  = (a - 1; - 2; - 3)\]; \[\overrightarrow {SB}  = ( - 1;b - 2; - 3)\]; \[\overrightarrow {SC}  = ( - 1; - 2;c - 3)\].

Vì \(SA\), \(SB\), \(SC\) đôi một vuông góc nên

\[\left\{ \begin{array}{l}\overrightarrow {SA}  \bot \overrightarrow {SB} \\\overrightarrow {SB}  \bot \overrightarrow {SC} \\\overrightarrow {SA}  \bot \overrightarrow {SC} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {SA} .\overrightarrow {SB}  = 0\\\overrightarrow {SB} .\overrightarrow {SC}  = 0\\\overrightarrow {SA} .\overrightarrow {SC}  = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a + 2b = 14\\2b + 3c = 14\\a + 3c = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 7\\b = \frac{7}{2}\\c = \frac{7}{3}\end{array} \right.\].

Do \(SA\), \(SB\), \(SC\) đôi một vuông góc, nên: \({V_{SABC}} = \frac{1}{6}SA.SB.SC = \frac{1}{6}.7.\frac{7}{2}.\frac{7}{3} = \frac{{343}}{{36}}\).

a)  Sai.

b)  Đúng.

c)  Sai.

d)  Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

b) Đúng: Tích vô hướng có tính chất phân phối đối với phép cộng.

c) Sai. Chọn \(\overrightarrow a  = \left( {1\,;\,1\,;\,0} \right)\), \(\overrightarrow b  = \left( {0\,;\,1\,;\,1} \right)\), \(\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\).

Khi đó \(\overrightarrow a .\overrightarrow b  = 1 \Rightarrow \left( {\overrightarrow {a.} \overrightarrow b } \right).\overrightarrow c  = \left( {1\,;\,0\,;\,1} \right)\) và \(\overrightarrow b .\overrightarrow c  = 1 \Rightarrow \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right) = \left( {1\,;\,1\,;\,0} \right)\).

Suy ra : \(\left( {\overrightarrow a .\overrightarrow b } \right).\overrightarrow c  \ne \overrightarrow a .\left( {\overrightarrow b .\overrightarrow c } \right)\)

d) Đúng: Từ định nghĩa của tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\), ta suy ra \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\]

Lời giải

Ta có: \(M\left( {3;3;3} \right)\), gọi \(A,B,C\) lần lượt là hình chiếu của \(M\) lên các trục tọa độ \(Ox,Oy,Oz\).

\( \Rightarrow A\left( {3;0;0} \right),\,\,B\left( {0;3;0} \right),\,\,\,C\left( {0;0;3} \right)\).

\( \Rightarrow AB = BC = CA = 3\sqrt 2 \).

\( \Rightarrow \Delta ABC\) là tam giác đều.

\( \Rightarrow \) Trực tâm \(H\) trùng với trọng tâm \(G\) của \(\Delta ABC\).

\( \Rightarrow H \equiv G\left( {1;1;1} \right)\).

\[ \Rightarrow {a^2} + {b^2} + {c^2} = 3\].