Câu hỏi:

02/10/2025 10 Lưu

Một chi tiết trong bộ trang sức có hình bát diện đều, được gắn hệ trục tọa độ Oxyz như hình vẽ. Các hình chóp S.ABCD và I.ABCD là các hình chóp tứ giác đều cạnh \(1\,{\rm{cm}}\).

Một chi tiết trong bộ trang sức có hình bát diện đều, được gắn hệ trục tọa độ \(Oxyz\) như hình vẽ. Các hình chóp \(S.ABCD\) và \(I. (ảnh 1)

a) Tính tổng hoành độ các đỉnh \(S,A,B,C,D,I\).

b) Tính số đo góc nhị diện \[\left[ {S;CD;I} \right]\] theo đơn vị độ, làm tròn đến hàng đơn vị.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đáp số: \(0\).

Ta có \(OA = OB = OC = OD = \frac{{\sqrt 2 }}{2}\) nên \(A\left( { - \frac{1}{{\sqrt 2 }};0;0} \right),B\left( {0; - \frac{1}{{\sqrt 2 }};0} \right)\)\(,C\left( {\frac{1}{{\sqrt 2 }};0;0} \right)\),

\(D\left( {0;\frac{1}{{\sqrt 2 }};0} \right)\)

Ta có \(OI = SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}  = \frac{1}{{\sqrt 2 }}\) nên \(S\left( {0;0;\frac{1}{{\sqrt 2 }}} \right),I\left( {0;0; - \frac{1}{{\sqrt 2 }}} \right)\).

Tổng hoành độ các đỉnh \(S,A,B,C,D,I\) là:

\( - \frac{1}{{\sqrt 2 }} + 0 + \frac{1}{{\sqrt 2 }} + 0 + 0 + 0 = 0\).

b) Đáp số: \(109\).

Gọi \(M\) là trung điểm của \(CD\) thì \(M\left( {\frac{1}{{2\sqrt 2 }};\frac{1}{{2\sqrt 2 }};0} \right)\). 

Một chi tiết trong bộ trang sức có hình bát diện đều, được gắn hệ trục tọa độ \(Oxyz\) như hình vẽ. Các hình chóp \(S.ABCD\) và \(I. (ảnh 2)

Có \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow \left[ {S;CD;I} \right] = \widehat {SMI}\).

Ta có \(\overrightarrow {MS} \left( { - \frac{1}{{2\sqrt 2 }}; - \frac{1}{{2\sqrt 2 }};\frac{1}{{\sqrt 2 }}} \right),\overrightarrow {MI} \left( { - \frac{1}{{2\sqrt 2 }}; - \frac{1}{{2\sqrt 2 }}; - \frac{1}{{\sqrt 2 }}} \right)\).

\[ \Rightarrow \cos \widehat {SMI} = \frac{{ - \frac{1}{{2\sqrt 2 }}. - \frac{1}{{2\sqrt 2 }} +  - \frac{1}{{2\sqrt 2 }}. - \frac{1}{{2\sqrt 2 }} + \frac{1}{{\sqrt 2 }}. - \frac{1}{{\sqrt 2 }}}}{{\sqrt {{{\left( { - \frac{1}{{2\sqrt 2 }}} \right)}^2} + {{\left( { - \frac{1}{{2\sqrt 2 }}} \right)}^2} + {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}} .\sqrt {{{\left( { - \frac{1}{{2\sqrt 2 }}} \right)}^2} + {{\left( { - \frac{1}{{2\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{ - 1}}{{\sqrt 2 }}} \right)}^2}} }} =  - \frac{1}{3}\]

\[ \Rightarrow \widehat {SMI} \approx 109^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

b) Đúng.

Ta có: \(\overrightarrow {C'K}  = \overrightarrow {C'C}  + \overrightarrow {CK}  = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CD} } \right) = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {C'A'}  + \overrightarrow {C'D'} } \right)\)

\( = \overrightarrow {C'C}  + \frac{1}{2}\left( {\overrightarrow {C'B'}  + \overrightarrow {C'D'}  + \overrightarrow {C'D'} } \right) = \overrightarrow {C'C}  + \frac{1}{2}\overrightarrow {C'B'}  + \overrightarrow {C'D'} \)

c) Sai.

Ta có: \[\overrightarrow {AB} .\overrightarrow {B'D'}  = \left( {\overrightarrow {AA'}  + \overrightarrow {A'B'}  + \overrightarrow {B'B} } \right).\overrightarrow {B'D'}  = \overrightarrow {AA'} .\overrightarrow {B'D'}  + \overrightarrow {A'B'} .\overrightarrow {B'D'}  + \overrightarrow {B'B} .\overrightarrow {B'D'}  = \overrightarrow {A'B'} .\overrightarrow {B'D'} \]

\( = A'B'.B'D'.{\rm{cos}}\left( {\overrightarrow {A'B'} ,\overrightarrow {B'D'} } \right) = a.a\sqrt 2 .{\rm{cos}}\left( {135^\circ } \right) =  - {a^2}\)

d) Đúng.

Ta đặt \[\overrightarrow {AA'}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AD}  = \overrightarrow c \]. Ta có \[\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = a\]

\[\overrightarrow {AC'}  = \overrightarrow {AA'}  + \overrightarrow {AB}  + \overrightarrow {AD} \] hay \[\overrightarrow {AC'}  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c \]

Mặt khác

\[\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \left( {\overrightarrow {AB}  + \overrightarrow {BN} } \right) - \left( {\overrightarrow {AD}  + \overrightarrow {DM} } \right)\] với \[\overrightarrow {BN}  = \frac{x}{a}.\overrightarrow a \] và \[\overrightarrow {DM}  = \frac{x}{a}.\overrightarrow b \]

Do đó \[\overrightarrow {MN}  = \left( {\overrightarrow b  + \frac{x}{a}\overrightarrow a } \right) - \left( {\overrightarrow c  + \frac{x}{a}\overrightarrow b } \right) = \frac{x}{a}\overrightarrow a  + \left( {a - \frac{x}{a}} \right)\overrightarrow b  - \overrightarrow c \]

Ta có \[\overrightarrow {AC'} .\overrightarrow {MN}  = \left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)\left[ {\frac{x}{a}\overrightarrow a  + \left( {a - \frac{x}{a}} \right)\overrightarrow b  - \overrightarrow c } \right]\]

Vì \[\overrightarrow a .\overrightarrow b  = 0,\overrightarrow a .\overrightarrow c  = 0,\overrightarrow b .\overrightarrow c  = 0\] nên ta có

\[\overrightarrow {AC'} .\overrightarrow {MN}  = \frac{x}{a}{\overrightarrow a ^2} + \left( {1 - \frac{x}{a}} \right){\overrightarrow b ^2} - {\overrightarrow c ^2} = x.a + \left( {1 - \frac{x}{a}} \right){a^2} - {a^2} = 0\], vậy góc giữa vectơ \[\overrightarrow {AC'} \] và \(\overrightarrow {MN} \) bằng  \(90^\circ \).

Lời giải

 (1,0 điểm) Cho hình chóp \[S.ABC\] có \[SA = SB = SC = AB = AC = a\], \[BC = a\sqrt 2 \]. Tính góc giữa hai véc tơ \[\overrightarrow {AB} \] và \[\overrightarrow {SC} \]. (ảnh 1)

Tam giác \[ABC\] có \[AB = a,\,AC = a,\,BC = a\sqrt 2  \Rightarrow \Delta ABC\] vuông tại \[A \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0\].

\[\cos \left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} .\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {AB} } \right|}} = \frac{{\left( {\overrightarrow {SA}  + \overrightarrow {AC} } \right).\overrightarrow {AB} }}{{SC.AB}} = \frac{{\overrightarrow {SA} .\overrightarrow {AB}  + \overrightarrow {AC} .\overrightarrow {AB} }}{{SC.AB}} = \frac{{SA.AB.\cos 120^\circ }}{{SC.AB}} = \frac{{a.a.\left( { - \frac{1}{2}} \right)}}{{a.a}} =  - \frac{1}{2}.\]

Suy ra \[\left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = 120^\circ \].