Câu hỏi:

02/10/2025 382 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm \(O\). Trong các mệnh đề sau mệnh đề nào là mệnh đề SAI?

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \). 
B. \(\overrightarrow {SA} - \overrightarrow {SB} + \overrightarrow {SC} - \overrightarrow {SD} = \overrightarrow 0 \).
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).      
D. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A Đúng

B Đúng

C Sai

D Đúng

Ta có \(O\) là trung điểm của \(AC\) nên \(\overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \). (ảnh 1)

+) Ta có \(O\) là trung điểm của \(AC\) nên \(\overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \).

\(O\) là trung điểm của \(BD\) nên \(\overrightarrow {SB}  + \overrightarrow {SD}  = 2\overrightarrow {SO} \).

Do đó \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) là khẳng định đúng.

+) \(\overrightarrow {SA}  - \overrightarrow {SB}  + \overrightarrow {SC}  - \overrightarrow {SD}  = \overrightarrow {BA}  + \overrightarrow {DC}  = \overrightarrow 0 \) là khẳng định đúng.

+) Ta có \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) như chứng minh trên.

Do đó \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = \overrightarrow 0 \) là khẳng định sai.

+) Ta có \(O\) là trung điểm của \(AC\) nên \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow O \).

\(O\) là trung điểm của \(BD\) nên \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Do đó \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) là khẳng định đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD,\,\,B\left( {3;0;8} \right),\,\,D\left( { - 5; - 4;0} \right)\). Biết đỉnh \(A\) thuộc mặt phẳ (ảnh 1)

\(\overrightarrow {BD}  = \left( { - 8; - 4; - 8} \right)\)\( \Rightarrow BD = 12\)\( \Rightarrow AB = \frac{{12}}{{\sqrt 2 }}\)\( = 6\sqrt 2 \).

Gọi \(M\)là trung điểm \(AB\)\( \Rightarrow MC = 3\sqrt {10} \).

\(\left| {\overrightarrow {CA}  + \overrightarrow {CB} } \right|\)\( = \left| {2\overrightarrow {CM} } \right|\)\( = 2CM\)\( = 6\sqrt {10} \).

Câu 4

A. Vec tơ cùng vuông góc với vec tơ \(\overrightarrow a \)\(\overrightarrow b \) có tọa độ bằng \(\left( { - 5; - 7; - 3} \right)\).
B. Vectơ \(\overrightarrow a \) không cùng phương với vectơ \(\overrightarrow b \).
C. Vectơ \(\overrightarrow a \) không vuông góc với vectơ \(\overrightarrow b \).
D. \(\left| {\overrightarrow a } \right| = 14\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {AB} .\overrightarrow {CD} = - 4\).                              
B. \(\overrightarrow {AB} .\overrightarrow {CD} = 2\).                         
C. \(\overrightarrow {AB} .\overrightarrow {CD} = 1\).                              
D. \(\overrightarrow {AB} .\overrightarrow {CD} = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP