Câu hỏi:

02/10/2025 18 Lưu

Cho tứ diện ABCDAB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \)\(\overrightarrow {CD} \) ?                

A. \({60^0}\).            
B. \[{45^0}\].            
C. \[{90^0}\].                 
D. \[{120^0}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

   Ta có   \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {CD (ảnh 1)

Ta có

 \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AD}  - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC} \\ = AB.AD.\cos {60^0} - AB.AC.\cos {60^0} = 0\end{array}\)

 \( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = {90^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: \(10\sqrt 3 \,\,\left( N \right)\).

Một tấm gỗ tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không giãn xuất phát từ điểm \(O\) trên tr (ảnh 2)

Gọi \({A_1},{B_1},{C_1}\) lần lượt là các điểm sao cho \(\overrightarrow {O{A_1}}  = \overrightarrow {{F_1}} ,{\rm{ }}\overrightarrow {O{B_1}}  = \overrightarrow {{F_2}} ,{\rm{ }}\overrightarrow {O{C_1}}  = \overrightarrow {{F_3}} \)

Lấy các điểm D1,A1',B1',D1' sao cho OA1D1B1.C1A1'D1'B1' là hình hộp.

Theo quy tắc hình hộp ta có: OA1+OB1+OC1=OD1'

Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) đôi một vuông góc với nhau và có độ lớn: \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 10\left( N \right)\) nên hình hộp OA1D1B1.C1A1'D1'B1' có ba cạnh \(OA,OB,OC\) đôi một vuông góc và bằng nhau. Vì thế OA1D1B1.C1A1'D1'B1' là hình lập phương có độ dài cạnh bằng \(10\), suy ra độ dài đường chéo bằng \(10\sqrt 3 \)

Lời giải

Cho tứ diện ABCD có AB = AC = AD = a \[\widehat {BAC} = \widehat {BAD} = 60^\circ ,\,\]       \[\widehat {CAD} = 90^\circ \]. Gọi \(I\) là điểm trên c (ảnh 1)

Ta có: \(\overrightarrow {IJ} \,.\overrightarrow {AB}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {AD}  - \frac{3}{2}\overrightarrow {AB} } \right).\overrightarrow {AB}  = \,\frac{1}{2}\left( {\overrightarrow {AC} .\overrightarrow {AB}  + \overrightarrow {AD} .\overrightarrow {AB}  - \frac{3}{2}{{\overrightarrow {AB} }^2}} \right)\)

Lại có \[\overrightarrow {AB} .\overrightarrow {AD}  = AB.AD.cos60^\circ  = \frac{{{a^2}}}{2}\]

 \[\overrightarrow {AC} .\overrightarrow {AB}  = \overrightarrow {AC} .\overrightarrow {AB}  = AC.AB.cos60^\circ  = \frac{{{a^2}}}{2}\].

      Vậy: \(\overrightarrow {IJ} \,.\overrightarrow {AB}  = \frac{1}{2}\left( {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{2} - \frac{3}{2}{a^2}} \right) =  - \frac{{{a^2}}}{4}\)

      Có \[\widehat {CAD} = 90^\circ  \Rightarrow \overrightarrow {AC} .\overrightarrow {AD}  = 0.\]

      \(\overrightarrow {IJ} \, = \,\overrightarrow {IA}  + \overrightarrow {AJ}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {AD}  - \frac{3}{2}\overrightarrow {AB} } \right)\)

      \(I{J^2} = {\overrightarrow {IJ} ^2}\, = \frac{1}{4}{\left( {\overrightarrow {AC}  + \overrightarrow {AD}  - \frac{3}{2}\overrightarrow {AB} } \right)^2} = \frac{1}{4}\left( {\frac{{17}}{4}{a^2} + 2\overrightarrow {AC} .\overrightarrow {AD}  - 3\overrightarrow {AC} .\overrightarrow {AB}  - 3\overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{{5{a^2}}}{{16}}\)

      \( \Rightarrow IJ = \frac{{a\sqrt 5 }}{4}.\)

Vậy: \(\cos \left( {\overrightarrow {IJ} \,,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {IJ} \,.\overrightarrow {AB} }}{{IJ.AB}} = \frac{{ - \frac{{{a^2}}}{4}}}{{\frac{{a\sqrt 5 }}{4}.a}} =  - \frac{{\sqrt 5 }}{5}\)