Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình lượng giác \(\sin 2x = - \frac{1}{2}\) (*). Khi đó:
a) Phương trình (*) tương đương \(\sin 2x = \sin \frac{\pi }{6}\)
b) Trong khoảng \(\left( {0;\pi } \right)\) phương trình có 3 nghiệm
c) Tổng các nghiệm của phương trình trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{3\pi }}{2}\)
d) Trong khoảng \(\left( {0;\pi } \right)\) phương trình có nghiệm lớn nhất bằng \(\frac{{11\pi }}{{12}}\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình lượng giác \(\sin 2x = - \frac{1}{2}\) (*). Khi đó:
a) Phương trình (*) tương đương \(\sin 2x = \sin \frac{\pi }{6}\)
b) Trong khoảng \(\left( {0;\pi } \right)\) phương trình có 3 nghiệm
c) Tổng các nghiệm của phương trình trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{3\pi }}{2}\)
d) Trong khoảng \(\left( {0;\pi } \right)\) phương trình có nghiệm lớn nhất bằng \(\frac{{11\pi }}{{12}}\)
Quảng cáo
Trả lời:

a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
\(\sin 2x = - \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{{ - \pi }}{6} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x = \frac{{ - \pi }}{6} + k2\pi }\\{2x = \frac{{7\pi }}{6} + k2\pi }\end{array}(k \in \mathbb{Z}) \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{ - \pi }}{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}(k \in \mathbb{Z})} \right.} \right.\).
\(0 < x < \pi \Rightarrow \left[ {\begin{array}{*{20}{l}}{0 < \frac{{ - \pi }}{{12}} + k\pi < \pi }\\{0 < \frac{{7\pi }}{{12}} + k\pi < \pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = 1}\\{k = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{11\pi }}{{12}}}\\{x = \frac{{7\pi }}{{12}}}\end{array}} \right.} \right.\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với \(g = 9,8\;m/{s^2}\), vận tốc ban đầu \({v_0} = 8\;m/s\), phương trình quỹ đạo của cầu:
\(y = \frac{{ - g \cdot {x^2}}}{{2 \cdot v_0^2 \cdot {{\cos }^2}\alpha }} + \tan (\alpha ) \cdot x + {y_0}\)
Khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là \(6,68\;m\); nghĩa là \(x = 6,68\;m\).
Vậy người chơi đã phát cầu một góc gần \({54^0}\) hoặc gần so với mặt đất.
Lời giải
Ta có:
Vậy phương trình có nghiệm là:
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.