Câu hỏi:

04/10/2025 18 Lưu

Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right)\) (*), vậy:

a) Phương trình có nghiệm \(\left[ {\begin{array}{*{20}{l}}{x = \pi + k2\pi }\\{x = \frac{\pi }{6} + k\frac{{2\pi }}{3}}\end{array}(k \in \mathbb{Z}){\rm{.}}} \right.\)

b) Trong khoảng \((0;\pi )\) phương trình có 2 nghiệm

c) Tổng các nghiệm của phương trình trong khoảng \((0;\pi )\) bằng \(\frac{{7\pi }}{6}\)

d) Trong khoảng \((0;\pi )\) phương trình có nghiệm lớn nhất bằng \(\frac{{5\pi }}{6}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

Ta có: \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi }\\{2x - \frac{\pi }{4} = \frac{\pi }{4} - x + k2\pi }\end{array}(k \in \mathbb{Z})} \right.\).

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pi + k2\pi }\\{x = \frac{\pi }{6} + k\frac{{2\pi }}{3}}\end{array}(k \in \mathbb{Z}){\rm{. V\`i }}x \in (0;\pi ){\rm{ n\^e n }}x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6}} \right\}} \right.{\rm{. }}\)

Vậy phương trình có hai nghiệm thuộc khoảng \((0;\pi )\)\(x = \frac{\pi }{6};x = \frac{{5\pi }}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \(g = 9,8\;m/{s^2}\), vận tốc ban đầu \({v_0} = 8\;m/s\), phương trình quỹ đạo của cầu:

\(y = \frac{{ - g \cdot {x^2}}}{{2 \cdot v_0^2 \cdot {{\cos }^2}\alpha }} + \tan (\alpha ) \cdot x + {y_0}\)

Khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là \(6,68\;m\); nghĩa là \(x = 6,68\;m\).

 Ta có: 9,8(6,68)2128cos2α+tan(α)(6,68)+0,7=09,8(6,68)21281+tan2α+tan(α)(6,68)+0,7=0tanα1,378tanα0,576α54,04°α29,97°

Vậy người chơi đã phát cầu một góc gần \({54^0}\) hoặc gần 30° so với mặt đất.

Lời giải

Ta có: cosx+30°+1=0cosx+30°=1

x+30°=180°+k360°(k)x=150°+k360°(k).

Vậy phương trình có nghiệm là: x=150°+k360°(k)

Câu 4

A. \(x \in \mathbb{R}\).                          
B. \(x = \pm \arcsin 5 + k2\pi \left( {k \in \mathbb{Z}} \right)\).              
C. \(\left[ \begin{array}{l}x = \arcsin 5 + k2\pi \\x = \pi - \arcsin 5 + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).               
D. \(x \in \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 3.                   
B. 2.                 
C. 0.                
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP