Câu hỏi:

04/10/2025 751 Lưu

Cho phương trình lượng giác \(\cot 3x = - \frac{1}{{\sqrt 3 }}\) (*). Khi đó

a) Phương trình (*) tương đương \(\cot 3x = \cot \left( {\frac{{ - \pi }}{6}} \right)\)

b) Phương trình (*) có nghiệm \(x = \frac{\pi }{9} + k\frac{\pi }{3}(k \in \mathbb{Z})\)

c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};0} \right)\) bằng \(\frac{{ - 5\pi }}{9}\)

d) Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{2\pi }}{9}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Đúng

 

\(\cot 3x = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot 3x = \cot \left( {\frac{{ - \pi }}{3}} \right) \Leftrightarrow 3x = \frac{{ - \pi }}{3} + k\pi (k \in \mathbb{Z}) \Leftrightarrow x = \frac{{ - \pi }}{9} + k\frac{\pi }{3}(k \in \mathbb{Z})\).

\( - \frac{\pi }{2} < \frac{{ - \pi }}{9} + k\frac{\pi }{3} < 0(k \in \mathbb{Z}) \Leftrightarrow \frac{{ - 7}}{6} < k < \frac{1}{3} \Rightarrow k = \{ - 1;0\} \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \pi }}{9}}\\{x = \frac{{ - 4\pi }}{9}}\end{array}.} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có phương trình: \(550 + 450 \cdot \cos \frac{\pi }{{50}}t = 250 \Leftrightarrow \cos \frac{\pi }{{50}}t =  - \frac{2}{3}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{\pi }{{50}}t \approx 2,3 + k2\pi }\\{\frac{\pi }{{50}}t \approx  - 2,3 + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t \approx 36,61 + k100}\\{t \approx  - 36,61 + k100}\end{array},k \in \mathbb{Z}.} \right.} \right.\)

Vậy trong khoảng 60 phút đầu tiên kể từ lúc vệ tinh bay vào quỹ đạo, tại thời điểm \(t \approx 36,61\) (phút) thì ta có thể thực hiện thí nghiệm đó.

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

 

Ta có: \(\sin \left( {3x + \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{3x + \frac{\pi }{3} = - \frac{\pi }{3} + k2\pi }\\{3x + \frac{\pi }{3} = \frac{{4\pi }}{3} + k2\pi }\end{array}(k \in \mathbb{Z})} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{3x = - \frac{{2\pi }}{3} + k2\pi }\\{3x = \pi + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}}\\{x = \frac{\pi }{3} + k\frac{{2\pi }}{3}}\end{array}(k \in \mathbb{Z})} \right.} \right.\).

\(x \in \left( {0;\frac{\pi }{2}} \right)\) nên \(x = \frac{\pi }{3},x = \frac{{4\pi }}{9}\).

Vậy phương trình đã cho có hai nghiệm thuộc khoảng \(\left( {0;\frac{\pi }{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\).        
B. \(x = k\pi ,k \in \mathbb{Z}\).              
C. \(x = \frac{{k\pi }}{3},k \in \mathbb{Z}\).     
D. \(x = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP