Cho dãy số \(\left( {{u_n}} \right):\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2023;{u_2} = 2024}\\{2{u_{n + 1}} = {u_n} + {u_{n + 2}}}\end{array}} \right.\) với \(n \ge 1\). Khi đó:
a) Dãy \(\left( {{v_n}} \right):{v_n} = {u_n} - {u_{n - 1}}\) là dãy không đổi.
b) Biểu thị \({u_n}\) qua \({u_{n - 1}}\) ta được \({u_n} = {u_{n - 1}} + 1\)
c) Ta có \({u_3} = 2025\)
d) Ta có \({u_{2024}} = 4044\)
Cho dãy số \(\left( {{u_n}} \right):\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2023;{u_2} = 2024}\\{2{u_{n + 1}} = {u_n} + {u_{n + 2}}}\end{array}} \right.\) với \(n \ge 1\). Khi đó:
a) Dãy \(\left( {{v_n}} \right):{v_n} = {u_n} - {u_{n - 1}}\) là dãy không đổi.
b) Biểu thị \({u_n}\) qua \({u_{n - 1}}\) ta được \({u_n} = {u_{n - 1}} + 1\)
c) Ta có \({u_3} = 2025\)
d) Ta có \({u_{2024}} = 4044\)
Câu hỏi trong đề: Đề kiểm tra Dãy số (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) Ta có: \(2{u_{n + 1}} = {u_n} + {u_{n + 2}} \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} \Rightarrow {v_{n + 2}} = {v_{n + 1}}\)
Tương tự, ta chứng minh được \({v_{n + 1}} = \ldots = {v_2} = 1\), hay dãy \(\left( {{v_n}} \right)\) là dãy không đổi.
b) Ta có: \({u_n} - {u_{n - 1}} = 1 \Rightarrow {u_n} = {u_{n - 1}} + 1\)
Suy ra \({u_n} = \left( {{u_n} - {u_{n - 1}}} \right) + \left( {{u_{n - 1}} - {u_{n - 2}}} \right) + \ldots + \left( {{u_2} - {u_1}} \right) + {u_1}\)
\( = 1 + 1 + \ldots + 1 + {u_1} = n - 1 + 2023 = n + 2022.{\rm{ }}\)
Khi đó \({u_{2024}} = 4046\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có: \({u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}}\)\( = 51,3\).
Lời giải
a) Sai |
b) Đúng |
c) Đúng |
d) Đúng |
Nhận xét: \({u_n} = \sqrt {n + 1} - \sqrt n > 0,\forall n \in {\mathbb{N}^*}\).
Ta có: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 2} - \sqrt {n + 1} }}{{\sqrt {n + 1} - \sqrt n }}\)
\( = \frac{{(\sqrt {n + 2} - \sqrt {n + 1} )(\sqrt {n + 2} + \sqrt {n + 1} )(\sqrt {n + 1} + \sqrt n )}}{{(\sqrt {n + 1} - \sqrt n )(\sqrt {n + 1} + \sqrt n )(\sqrt {n + 2} + \sqrt {n + 1} )}} = \frac{{\sqrt {n + 1} + \sqrt n }}{{\sqrt {n + 2} + \sqrt {n + 1} }}{\rm{. }}\)
Vì \(0 < \sqrt {n + 1} + \sqrt n < \sqrt {n + 2} + \sqrt {n + 1} \) nên \(\frac{{\sqrt {n + 1} + \sqrt n }}{{\sqrt {n + 2} + \sqrt {n + 1} }} < 1\)
hay \(\frac{{{u_{n + 1}}}}{{{u_n}}} < 1,\forall n \in {\mathbb{N}^*}\).
Suy ra \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.