Cho dãy số \(\left( {{u_n}} \right)\) được xác định \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2}\\{{u_{n + 1}} - {u_n} = 2n - 1}\end{array}} \right.\). Khi đó:
a) Ta có \({u_2} = 3\)
b) Ta có \({u_4} = 11\)
c) Ta có \({u_{2024}} = 4092536\)
d) Ta có \({u_{2023}} = 4088482\)
Cho dãy số \(\left( {{u_n}} \right)\) được xác định \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 2}\\{{u_{n + 1}} - {u_n} = 2n - 1}\end{array}} \right.\). Khi đó:
a) Ta có \({u_2} = 3\)
b) Ta có \({u_4} = 11\)
c) Ta có \({u_{2024}} = 4092536\)
d) Ta có \({u_{2023}} = 4088482\)
Câu hỏi trong đề: Đề kiểm tra Dãy số (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Ta có:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = 2n - 1 \Rightarrow {u_{n + 1}} = {u_n} + 2n - 1\\{u_2} = 2 + 2.1 - 1 = 3\end{array}\)
Khi đó: \({u_3} = 3 + 2.2 - 1 = 6\)
\({u_4} = 6 + 2.3 - 1 = 11\)
Suy ra: \({u_n} = 2 + {(n - 1)^2}\)
c) Ta có \({u_{2024}} = 4092531\)
d) Ta có \({u_{2023}} = 4088486\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có: \({u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}}\)\( = 51,3\).
Lời giải
a) Sai |
b) Đúng |
c) Đúng |
d) Đúng |
Nhận xét: \({u_n} = \sqrt {n + 1} - \sqrt n > 0,\forall n \in {\mathbb{N}^*}\).
Ta có: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 2} - \sqrt {n + 1} }}{{\sqrt {n + 1} - \sqrt n }}\)
\( = \frac{{(\sqrt {n + 2} - \sqrt {n + 1} )(\sqrt {n + 2} + \sqrt {n + 1} )(\sqrt {n + 1} + \sqrt n )}}{{(\sqrt {n + 1} - \sqrt n )(\sqrt {n + 1} + \sqrt n )(\sqrt {n + 2} + \sqrt {n + 1} )}} = \frac{{\sqrt {n + 1} + \sqrt n }}{{\sqrt {n + 2} + \sqrt {n + 1} }}{\rm{. }}\)
Vì \(0 < \sqrt {n + 1} + \sqrt n < \sqrt {n + 2} + \sqrt {n + 1} \) nên \(\frac{{\sqrt {n + 1} + \sqrt n }}{{\sqrt {n + 2} + \sqrt {n + 1} }} < 1\)
hay \(\frac{{{u_{n + 1}}}}{{{u_n}}} < 1,\forall n \in {\mathbb{N}^*}\).
Suy ra \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.