Câu hỏi:

05/10/2025 64 Lưu

Trong dịp nghỉ hè bạn Lan rất thích đi bơi. Thời gian đi bơi mỗi ngày trong thời gian gần đây của bạn Lan được thống kê lại ở bảng sau:

Thời gian (phút)

\[\left[ {30\,;\,35} \right)\]

\[\left[ {35\,;\,40} \right)\]

\[\left[ {45\,;\,50} \right)\]

\[\left[ {50\,;\,55} \right)\]

\[\left[ {55\,;\,60} \right)\]

Số ngày

3

6

4

8

4

Nhóm chứa tứ phân vị thứ nhất \({Q_1}\) là

A. \[\left[ {30\,;\,35} \right)\].                     
B. \[\left[ {35\,;\,40} \right)\].        
C. \[\left[ {45\,;\,50} \right)\].     
D. \[\left[ {50\,;\,55} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu là \(n = 25\).

Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_6} + {x_7}}}{2}\). Do \({x_6},{x_7}\) đều thuộc nhóm \[\left[ {35\,;\,40} \right)\] nên nhóm này chứa \({Q_1}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhận xét 1 sai vì: khoảng biến thiên của mẫu số liệu ghép nhóm xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc, các nhận xét 2, 3 đúng.

Lời giải

a, Cỡ mẫu: \(n = 30\)

+ Sắp xếp mẫu số liệu theo thứ tự tăng dần ta được:

3

4

5

5

6

7

8

8

10

11

12

15

15

15

16

16

17

18

18

20

21

22

22

24

25

26

26

28

28

29

+ Giá trị lớn nhất của mẫu số liệu là \(29\), và giá trị nhỏ nhất của mẫu số liệu là \(3\), nên độ dài nhóm là \(29 - 3 = 26\)

+ Chia thành 6 nhóm có độ dài bằng nhau, ta chọn độ dài mỗi nhóm là \(4,5\), ta có mẫu số liệu ghép nhóm như bảng sau:

Nhóm

\(\left[ {3;\,7,5} \right)\)

\(\left[ {7,5;\,12} \right)\)

\(\left[ {12;\,16,5} \right)\)

\(\left[ {16,5;\,21} \right)\)

\(\left[ {21;\,25,5} \right)\)

\(\left[ {25,5;\,30} \right)\)

Tần số

6

4

6

4

5

5

b, + Tiền thưởng trung bình là: \(\overline X  = \frac{{{m_1}{x_1} + {m_2}{x_2} + ... + {m_6}{x_6}}}{n} = 16,2\)

+ Khoảng biến thiên: \(30 - 3 = 27\).

+ Khoảng tứ phân vị:

Tứ phân vị thứ nhất \({Q_1}\) là \({x_8}\)thuộc nhóm \(\left[ {7,5;\,12} \right)\) nên nhóm thứ 2 này chứa \({Q_1}\).

Suy ra: \(p = 2,\,{a_2} = 7,5;\,{a_3} = 12;\,{m_2} = 4;\,{m_1} = 6\).

Ta có: \({Q_1} = {a_2} + \frac{{\frac{n}{4} - {m_1}}}{{{m_2}}}\left( {{a_3} - {a_2}} \right) = 7,5 + \frac{{\frac{{30}}{4} - 6}}{4}\left( {12 - 7,5} \right) = \frac{{147}}{{16}} = 9,2\).

Tứ phân vị thứ nhất \({Q_3}\) là \({x_{23}}\)thuộc nhóm \(\left[ {21;\,25,5} \right)\) nên nhóm thứ 5 này chứa \({Q_3}\).

Suy ra: \(p = 5,\,{a_5} = 21;\,{a_6} = 25,5;\,{m_5} = 5;\,{m_4} = 4\).

Ta có: \({Q_3} = {a_5} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + {m_2} + {m_3} + {m_4}} \right)}}{{{m_5}}}\left( {{a_6} - {a_5}} \right) = 21 + \frac{{\frac{{3.30}}{4} - 20}}{5}.4,5 = \frac{{93}}{4} = 23,3\).

Vậy khoảng tứ phân vị là: \({\Delta _Q} = {Q_3} - {Q_1} = 23,3 - 9,2 = 14,1\).

Kết luận: b1, Đúng b2, Sai b3, Sai