Câu hỏi:

05/10/2025 44 Lưu

Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: \(km\)) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

Quãng đường \((km)\)

\([2,7;3,0)\)

\([3,0;3,3)\)

\([3,3;3,6)\)

\([3,6;3,9)\)

\([3,9;4,2)\)

Số ngày

3

6

5

4

2

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

A. \(0,9\).                    
B. \(0,975\).         
C. \(0,5\).             
D. \(0,575\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Cỡ mẫu \(n = 20\)

Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\)là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{x_3} \in [2,7;3,0);{x_4}; \ldots ;{x_9} \in [3,0;3,3);{x_{10}}; \ldots ;{x_{14}} \in [3,3;3,6);\)\(;{x_{15}}; \ldots ;{x_{18}} \in [3,6;3,9){\rm{;}}{x_{19}};{x_{20}} \in [3,9;4,2).\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [3,0;3,3)\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 3,0 + \frac{{\frac{{20}}{4} - 3}}{6}(3,3 - 3,0) = 3,1\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in [3,6;3,9)\).

Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 3,6 + \frac{{\frac{{3.20}}{4} - (3 + 6 + 5)}}{4}(3,9 - 3,6) = 3,675\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\({\Delta _Q} = {Q_3} - {Q_1} = 0,575\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Cỡ mẫu: \(n = 30\)

+ Sắp xếp mẫu số liệu theo thứ tự tăng dần ta được:

3

4

5

5

6

7

8

8

10

11

12

15

15

15

16

16

17

18

18

20

21

22

22

24

25

26

26

28

28

29

+ Giá trị lớn nhất của mẫu số liệu là \(29\), và giá trị nhỏ nhất của mẫu số liệu là \(3\), nên độ dài nhóm là \(29 - 3 = 26\)

+ Chia thành 6 nhóm có độ dài bằng nhau, ta chọn độ dài mỗi nhóm là \(4,5\), ta có mẫu số liệu ghép nhóm như bảng sau:

Nhóm

\(\left[ {3;\,7,5} \right)\)

\(\left[ {7,5;\,12} \right)\)

\(\left[ {12;\,16,5} \right)\)

\(\left[ {16,5;\,21} \right)\)

\(\left[ {21;\,25,5} \right)\)

\(\left[ {25,5;\,30} \right)\)

Tần số

6

4

6

4

5

5

b, + Tiền thưởng trung bình là: \(\overline X  = \frac{{{m_1}{x_1} + {m_2}{x_2} + ... + {m_6}{x_6}}}{n} = 16,2\)

+ Khoảng biến thiên: \(30 - 3 = 27\).

+ Khoảng tứ phân vị:

Tứ phân vị thứ nhất \({Q_1}\) là \({x_8}\)thuộc nhóm \(\left[ {7,5;\,12} \right)\) nên nhóm thứ 2 này chứa \({Q_1}\).

Suy ra: \(p = 2,\,{a_2} = 7,5;\,{a_3} = 12;\,{m_2} = 4;\,{m_1} = 6\).

Ta có: \({Q_1} = {a_2} + \frac{{\frac{n}{4} - {m_1}}}{{{m_2}}}\left( {{a_3} - {a_2}} \right) = 7,5 + \frac{{\frac{{30}}{4} - 6}}{4}\left( {12 - 7,5} \right) = \frac{{147}}{{16}} = 9,2\).

Tứ phân vị thứ nhất \({Q_3}\) là \({x_{23}}\)thuộc nhóm \(\left[ {21;\,25,5} \right)\) nên nhóm thứ 5 này chứa \({Q_3}\).

Suy ra: \(p = 5,\,{a_5} = 21;\,{a_6} = 25,5;\,{m_5} = 5;\,{m_4} = 4\).

Ta có: \({Q_3} = {a_5} + \frac{{\frac{{3n}}{4} - \left( {{m_1} + {m_2} + {m_3} + {m_4}} \right)}}{{{m_5}}}\left( {{a_6} - {a_5}} \right) = 21 + \frac{{\frac{{3.30}}{4} - 20}}{5}.4,5 = \frac{{93}}{4} = 23,3\).

Vậy khoảng tứ phân vị là: \({\Delta _Q} = {Q_3} - {Q_1} = 23,3 - 9,2 = 14,1\).

Kết luận: b1, Đúng b2, Sai b3, Sai

Lời giải

a) Đ. Nhóm \(\left[ {31;33} \right)\) có tần số bằng: 4.

b) S.Ta có nhóm \(\left[ {35;37} \right)\)có tần số lớn nhất nên Mốt của mẫu số liệu trên là \({M_0} = u + \frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}.g = 35 + \frac{{13 - 5}}{{2.13 - 5 - 7}}.2 = 36,14\).

c) Đ Ta có số phần tử của mẫu là \(n = 30\).

+ Ta có \(\frac{n}{4} = 7,5\) nên nhóm \(\left[ {33;35} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(7,5\). Nhóm \(\left[ {33;35} \right)\) có \(s = 33;h = 2;\,n = 5\) và nhóm 2 là nhóm \(\left[ {31;33} \right)\) có \(c{f_1} = 5\). Áp dụng công thức ta có tứ phân vị thứ nhất là \({Q_1} = 33 + \frac{{7,5 - 5}}{5}.2 = 34\)(\({}^0C\))

+ Ta có \(\frac{{3n}}{4} = 22,5\) nên nhóm \(\left[ {35;37} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(22,5\). Xét nhóm 4 là nhóm \(\left[ {35;37} \right)\) có \(t = 35;\,l = 2;\,{n_4} = 13\) và nhóm 3 có tần số tích lũy \(c{f_4} = 10\). Áp dụng công thức, ta có tứ phân vị thứ 3 là \({Q_3} = 35 + \frac{{22,5 - 10}}{{13}}.2 = 36,92\)(\({}^0C\))

 + Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là \(\Delta Q = {Q_3} - {Q_1} = 36,92 - 34 = 2,92\)

d) Đ. Ta có số trụng bình cộng của mẫu số liệu ghép nhóm trên là \(\overline x  = \frac{1}{{30}}\left( {1.30 + 32.4 + 34.5 + 36.13 + 38.7} \right) = 35,4\) (\({}^0C\))

Vậy phương sai của mẫu số liệu ghép nhóm trên là \({s^2} = \frac{1}{{30}}{\left( {1(30 - 35,4} \right)^2} + 4{(32 - 35.4)^2} + 5{(34 - 35,4)^2} + 13{(36 - 35.4)^2} + 7{(38 - 35.4)^2}) = 4,57\)