Câu hỏi:

05/10/2025 564 Lưu

Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

Cự li (m)

\([19;19,5)\)

\([19,5;20)\)

\([20;20,5)\)

\([20,5;21)\)

\([21;21,5)\)

Tần số

13

45

24

12

6

Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)

Trả lời: ………………

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giá trị đại diện

19,25

19,75

20,25

20,75

21,25

Tần số

13

45

24

12

6

Cỡ mẫu: \(n = 100\)

Số trung bình: \(\bar x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\)

Phương sai: \[\begin{array}{l}{s^2} = \frac{{13.{{\left( {19,25 - 20,015} \right)}^2} + 45.{{\left( {19,75 - 20,015} \right)}^2} + 24.{{\left( {20,25 - 20,015} \right)}^2} + 12.{{\left( {20,75 - 20,015} \right)}^2} + 6.{{\left( {21,25 - 20,015} \right)}^2}}}{{100}}\\ \approx 0,28\end{array}\]

Độ lệch chuẩn: \(\sigma  = \sqrt {0,28}  \approx 0,53\).

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhận xét 1 sai vì: Khoảng tứ phân vị của mẫu số liệu ghép nhóm chỉ phụ thuộc vào nửa giữa của mẫu số liệu, nên không bị ảnh hưởng bởi các giá trị bất thường và có thể dùng đại lượng này để loại giá trị bất thường.

Các nhận xét 2, 3, 4 đúng.

Lời giải

Nhận xét 1 sai vì: khoảng biến thiên của mẫu số liệu ghép nhóm xấp xỉ cho khoảng biến thiên của mẫu số liệu gốc, các nhận xét 2, 3 đúng.