Câu hỏi:

05/10/2025 1,688 Lưu

Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.

Số \[a\] thoả mãn có \(75\% \) giá trị trong mẫu số liệu nhỏ hơn \[a\]\(25\% \) giá trị trong mẫu số liệu lớn hơn \[a\]              

A. số trung bình.       
B. trung vị.              
C. tứ phân vị thứ nhất.                               
D. tứ phân vị thứ ba.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Cỡ mẫu của mẫu số liệu là \(n = 61\).

Gọi \({x_1},{x_2}, \ldots ,{x_{61}}\) là mẫu số liệu được sắp xếp theo thứ tự không giảm.

Trung vị của mẫu số liệu này là \({x_{31}} \in [30;35)\).

Ta có: \({n_m} = 26;{C_1} = 4 + 12 = 16;{u_m} = 30;{u_{m + 1}} = 35\).

Tứ phân vị thứ hai chính là trung vị của mẫu số liệu ghép nhóm là:

\({Q_2} = {M_e} = 30 + \frac{{\frac{{61}}{2} - 16}}{{26}}(35 - 30) = \frac{{1705}}{{52}} \approx 32,79(\;cm){\rm{. }}\)

Xét nửa mẫu số liệu bên trái \({x_1},{x_2}, \ldots ,{x_{30}}\) có trung vị \(\frac{{{x_{15}} + {x_{16}}}}{2} \in [25;30)\).

Ta có: \({n_i} = 12;{C_1} = 4;{x_i} = 25;{x_{i + 1}} = 30\).

Suy ra tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 25 + \frac{{\frac{{61}}{4} - 4}}{{12}}(30 - 25) = \frac{{475}}{{16}} \approx 29,69(\;cm)\).

Xét nửa mẫu số liệu bên trái \({x_{32}},{x_{33}}, \ldots ,{x_{61}}\) có trung vị \(\frac{{{x_{46}} + {x_{47}}}}{2} \in [35;40)\).

Ta có: \({n_j} = 13;{C_3} = 4 + 12 + 26 = 42;{x_i} = 35;{x_{i + 1}} = 40\).

Suy ra tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 35 + \frac{{\frac{{3.61}}{4} - 42}}{{13}}(40 - 35) = \frac{{1895}}{{52}} \approx 36,44(\;cm)\).

Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:

\({Q_1} \approx 29,69;{Q_2} = 32,79;{Q_3} = 36,44.{\rm{ }}\)

Câu 2

A. \[4,25\].                 
B. \[3,75\].               
C. \[4,75\].                      
D. \[3,25\].

Lời giải

Ta có số phần tử của mẫu là: \[n = 42 \Rightarrow \frac{n}{2} = 21\].

Mà \[c{f_2} = 18 < 21 < c{f_3} = 30\] suy ra nhóm \[3\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[21\].

Xét nhóm \[3\] là nhóm \[\left[ {3\,;\,4} \right)\] có \[r = 3\,;\,d = 1\,;\,{n_3} = 12\]và nhóm \[2\] là nhóm \[\left[ {2\,;\,3} \right)\]có \[c{f_2} = 18\].

Áp dụng công thức ta có trung vị của mẫu số liệu là:

\[{M_e} = 3 + \left( {\frac{{21 - 18}}{{12}}} \right).1 = 3,25\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tứ phân vị của mẫu số liệu trên luôn giảm.              
B. Tứ phân vị của mẫu số liệu trên luôn tăng.              
C. Tứ phân vị của mẫu số liệu trên luôn cách đều nhau.              
D. Tứ phân vị của mẫu số liệu trên không tăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP