Câu hỏi:

05/10/2025 267 Lưu

Một của hàng bán 3 loại hoa quả nhập khẩu: Nho Mỹ, Lê Hàn Quốc và Táo New Zealand. Sau khi giảm giá mỗi loại lần lượt là \(x,\)\(y,\)\(z\) trên \(1kg\)thì số liệu tính toán được ghi lại bởi bảng sau:

 Một của hàng bán 3 loại hoa quả nhập khẩu: Nho Mỹ, Lê Hàn Quốc và Táo New Zealand. Sau khi giảm giá mỗi loại lần lượt là x,y,z trên 1 kg thì số liệu tính toán được ghi lại bởi bảng sau: (ảnh 1)

Biết rằng \(x + y + z = 120\). Tính giá trị \(x,\)\(y,\)\(z\) để lợi nhuận bình quân của \(1kg\)hoa quả đạt được cao nhất.

A. \[x = y = z = 40\].                                  
B. \[x = 50\,;\,y = 30\,;\,z = 40\].              
C. \[x = 30\,;\,y = 50\,;\,z = 40\].               
D. \[x = 20\,;\,y = 60\,;\,z = 40\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì số lượng hoa quả bán được là \(250 + x + 200 + y + 180 + z = 750\)là cố định nên bình quân mỗi \(kg\)hoa quả có giá cao nhất khi số tiền thu được là cao nhất.

Gọi \(P\) là tổng số tiền thu được.

Khi đó \(P = \left( {250 - x} \right)(250 + x) + (200 - y)(200 + y) + (180 - z)(180 + z)\)

\( = {250^2} - {x^2} + {200^2} - {y^2} + {180^2} - {z^2}\)=\(134900 - {x^2} - {y^2} - {z^2}\).

Ta có bất đẳng thức: \[{x^2} + {y^2} + {z^2} \ge \frac{1}{3}{\left( {x + y + z} \right)^2} = 4800\].

Do đó \(P \le 130100\).

Vậy \(P\) lớn nhất \( \Leftrightarrow \left\{ \begin{array}{l}x + y + z = 120\\x = y = z\end{array} \right.\)\( \Leftrightarrow x = y = z = 40\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

 

Cỡ mẫu của mẫu số liệu là \(n = 61\).

Gọi \({x_1},{x_2}, \ldots ,{x_{61}}\) là mẫu số liệu được sắp xếp theo thứ tự không giảm.

Trung vị của mẫu số liệu này là \({x_{31}} \in [30;35)\).

Ta có: \({n_m} = 26;{C_1} = 4 + 12 = 16;{u_m} = 30;{u_{m + 1}} = 35\).

Tứ phân vị thứ hai chính là trung vị của mẫu số liệu ghép nhóm là:

\({Q_2} = {M_e} = 30 + \frac{{\frac{{61}}{2} - 16}}{{26}}(35 - 30) = \frac{{1705}}{{52}} \approx 32,79(\;cm){\rm{. }}\)

Xét nửa mẫu số liệu bên trái \({x_1},{x_2}, \ldots ,{x_{30}}\) có trung vị \(\frac{{{x_{15}} + {x_{16}}}}{2} \in [25;30)\).

Ta có: \({n_i} = 12;{C_1} = 4;{x_i} = 25;{x_{i + 1}} = 30\).

Suy ra tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 25 + \frac{{\frac{{61}}{4} - 4}}{{12}}(30 - 25) = \frac{{475}}{{16}} \approx 29,69(\;cm)\).

Xét nửa mẫu số liệu bên trái \({x_{32}},{x_{33}}, \ldots ,{x_{61}}\) có trung vị \(\frac{{{x_{46}} + {x_{47}}}}{2} \in [35;40)\).

Ta có: \({n_j} = 13;{C_3} = 4 + 12 + 26 = 42;{x_i} = 35;{x_{i + 1}} = 40\).

Suy ra tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 35 + \frac{{\frac{{3.61}}{4} - 42}}{{13}}(40 - 35) = \frac{{1895}}{{52}} \approx 36,44(\;cm)\).

Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:

\({Q_1} \approx 29,69;{Q_2} = 32,79;{Q_3} = 36,44.{\rm{ }}\)

Câu 3

A. \[4,25\].                 
B. \[3,75\].               
C. \[4,75\].                      
D. \[3,25\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[[40;60)\].            
B. \[[20;40)\].          
C. \[[60;80)\].                 
D. \[[80;100)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[8,0\].                   
B. \[7,5\].                 
C. \[7,8\].                        
D. \[8,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP