Điều tra \[42\] học sinh của một lớp \[11\] về số giờ tự học ở nhà, người ta có bảng sau đây:

Nhận xét nào đúng về tứ phân vị của mẫu số liệu trên.

Nhận xét nào đúng về tứ phân vị của mẫu số liệu trên.
Quảng cáo
Trả lời:
Ta có số phần tử của mẫu là: \[n = 42 \Rightarrow \frac{n}{4} = 10,5\].
Suy ra nhóm \[2\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[10,5\].
Xét nhóm \[2\] là nhóm \[\left[ {2\,;\,3} \right)\] có \[s = 2\,;\,h = 1\,;\,{n_2} = 10\,\]và nhóm \[1\] là nhóm \[\left[ {1\,;\,2} \right)\]có \[c{f_1} = 8\].
Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:
\[{Q_1} = 2 + \left( {\frac{{10,5 - 8}}{{10}}} \right).1 = 2,25\].
Ta có số phần tử của mẫu là: \[n = 42 \Rightarrow \frac{n}{2} = 21\].
Mà \[c{f_2} = 18 < 21 < c{f_3} = 30\] suy ra nhóm \[3\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[21\].
Xét nhóm \[3\] là nhóm \[\left[ {3\,;\,4} \right)\] có \[r = 3\,;\,d = 1\,;\,{n_3} = 12\]và nhóm \[2\] là nhóm \[\left[ {2\,;\,3} \right)\]có \[c{f_2} = 18\].
Áp dụng công thức ta có trung vị của mẫu số liệu là:
\[{M_e} = 3 + \left( {\frac{{21 - 18}}{{12}}} \right).1 = 3,25\].
Vậy tứ phân vị thứ \[2\] là \[{Q_2} = {M_e} = 3,25\].
Ta có số phần tử của mẫu là: \[\frac{{3n}}{4} = 31,5\].
Suy ra nhóm \[4\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \[31,5\].
Xét nhóm \[4\] là nhóm \[\left[ {4\,;\,5} \right)\] có \[t = 4\,;\,l = 1\,;\,{n_4} = 9\,\]và nhóm \[3\] là nhóm \[\left[ {3\,;\,4} \right)\]có \[c{f_3} = 30\].
Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:
\[{Q_3} = 4 + \left( {\frac{{31,5 - 30}}{9}} \right).1 = \frac{{25}}{6}\].
Vậy \[{Q_1} = 2,25\,;\,{Q_2} = 3,1\,;\,{Q_3} = \frac{{25}}{6} \approx 4,166\] nên tứ phân vị luôn tăng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Cỡ mẫu của mẫu số liệu là \(n = 61\).
Gọi \({x_1},{x_2}, \ldots ,{x_{61}}\) là mẫu số liệu được sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu này là \({x_{31}} \in [30;35)\).
Ta có: \({n_m} = 26;{C_1} = 4 + 12 = 16;{u_m} = 30;{u_{m + 1}} = 35\).
Tứ phân vị thứ hai chính là trung vị của mẫu số liệu ghép nhóm là:
\({Q_2} = {M_e} = 30 + \frac{{\frac{{61}}{2} - 16}}{{26}}(35 - 30) = \frac{{1705}}{{52}} \approx 32,79(\;cm){\rm{. }}\)
Xét nửa mẫu số liệu bên trái \({x_1},{x_2}, \ldots ,{x_{30}}\) có trung vị \(\frac{{{x_{15}} + {x_{16}}}}{2} \in [25;30)\).
Ta có: \({n_i} = 12;{C_1} = 4;{x_i} = 25;{x_{i + 1}} = 30\).
Suy ra tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = 25 + \frac{{\frac{{61}}{4} - 4}}{{12}}(30 - 25) = \frac{{475}}{{16}} \approx 29,69(\;cm)\).
Xét nửa mẫu số liệu bên trái \({x_{32}},{x_{33}}, \ldots ,{x_{61}}\) có trung vị \(\frac{{{x_{46}} + {x_{47}}}}{2} \in [35;40)\).
Ta có: \({n_j} = 13;{C_3} = 4 + 12 + 26 = 42;{x_i} = 35;{x_{i + 1}} = 40\).
Suy ra tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = 35 + \frac{{\frac{{3.61}}{4} - 42}}{{13}}(40 - 35) = \frac{{1895}}{{52}} \approx 36,44(\;cm)\).
Vậy các tứ phân vị của mẫu số liệu ghép nhóm là:
\({Q_1} \approx 29,69;{Q_2} = 32,79;{Q_3} = 36,44.{\rm{ }}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



