Câu hỏi:

06/10/2025 12 Lưu

Cho hình chóp tứ giác S.ABCD, gọi \(M\)\(N\) lần lượt là trung điểm các cạnh \(SA\)\(SC.\) Khi đó \(MN\) song song với đường thẳng              

A. \(AC.\)                  
B. \(BC.\)                
C. \(CD.\)                       
D. \(AD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Do \(MN\) là đường trung bình của tam giác \(SAC\) nên \(MN{\rm{//}}AC.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Sai

 

b) Xác định giao tuyến của hai mặt phẳng \((GIJ)\)\((BCD)\):

\(IJ\) là đường trung bình của tam giác \(ACD\) nên \(IJ//CD\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{G \in (GIJ) \cap (BCD)}\\{IJ//CD}\\{IJ \subset (GIJ),CD \subset (BCD)}\end{array} \Rightarrow Gx = (GIJ) \cap (BCD)} \right.\), trong đó \(Gx\) là đường thẳng qua \(G\)\(Gx//IJ//CD\).

c) Trong mặt phẳng \((BCD)\), kẻ \(Gx\) song song \(CD\) cắt \(BC\) tại \(M\), cắt \(BD\) tại \(N\).

Tính \(2IJ + 3MN\)

Cho tứ diện ABCD, gọi \(I\) và \(J\) lần lượt là trung điểm của \(AD\) và \(AC,G\) là trọng tâm của tam giác \(BCD\). (ảnh 1)

Gọi \(E\) là trung điểm \(CD\), theo định lí Thalès, ta có:

\(\frac{{BM}}{{BC}} = \frac{{BG}}{{BE}} = \frac{2}{3}{\rm{ (v\`i }}GM//CE);\frac{{MN}}{{CD}} = \frac{{BM}}{{BC}}{\rm{ (v\`i }}MN//CD{\rm{)}}{\rm{. }}\)

Suy ra \(\frac{{MN}}{{CD}} = \frac{2}{3}\) hay \(MN = \frac{2}{3}CD = \frac{2}{3} \cdot 6 = 4\).

\(IJ\) là đường trung bình tam giác \(ACD\) nên \(IJ = \frac{1}{2}CD = \frac{1}{2} \cdot 6 = 3\).

Do đó \(2IJ + 3MN = 2 \cdot 3 + 3 \cdot 4 = 18\).

d) \(3IJ + 2MN = 3 \cdot 3 + 2 \cdot 4 = 17\)

Câu 5

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm \(O\). Gọi \(I\) là điểm trên cạnh \(SO\). Mặt phẳng \(\left( {ICD} \right)\) cắt hình chóp theo thiết diện là hình gì?              

A. Tam giác.              
B. Hình thang.              
C. Hình bình hành.   
D. Hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP