Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:
Chọn D
Ta có: \(\left( {MNE} \right) \cap \left( {ABC} \right) = MN\), \(\left( {MNE} \right) \cap \left( {ACD} \right) = NE\).
Vì hai mặt phẳng \(\left( {MNE} \right)\)và \(\left( {BCD} \right)\)lần lượt chứa hai đường thẳng song song là \(MN\)và \(BC\)nên
\(\left( {MNE} \right) \cap \left( {BCD} \right) = Ex\)(với \(Ex\)là đường thẳng qua \(E\)và song song với \(BC\)), \(Ex\)cắt \(BD\)tại \(F\).
\(\left( {MNE} \right) \cap \left( {BCD} \right) = EF\)và \(\left( {MNE} \right) \cap \left( {ADD} \right) = FM\). Và \(MN = \frac{1}{2}BC\); \[EF = \frac{3}{4}BC\].
Vậy thiết diện là hình thang \(MNEF\)với \(F\)là điểm trên cạnh \(BD\)mà \[EF\]song song với \(BC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
b) Xác định giao tuyến của hai mặt phẳng \((GIJ)\) và \((BCD)\):
Vì \(IJ\) là đường trung bình của tam giác \(ACD\) nên \(IJ//CD\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{G \in (GIJ) \cap (BCD)}\\{IJ//CD}\\{IJ \subset (GIJ),CD \subset (BCD)}\end{array} \Rightarrow Gx = (GIJ) \cap (BCD)} \right.\), trong đó \(Gx\) là đường thẳng qua \(G\) và \(Gx//IJ//CD\).
c) Trong mặt phẳng \((BCD)\), kẻ \(Gx\) song song \(CD\) cắt \(BC\) tại \(M\), cắt \(BD\) tại \(N\).
Tính \(2IJ + 3MN\)

Gọi \(E\) là trung điểm \(CD\), theo định lí Thalès, ta có:
\(\frac{{BM}}{{BC}} = \frac{{BG}}{{BE}} = \frac{2}{3}{\rm{ (v\`i }}GM//CE);\frac{{MN}}{{CD}} = \frac{{BM}}{{BC}}{\rm{ (v\`i }}MN//CD{\rm{)}}{\rm{. }}\)
Suy ra \(\frac{{MN}}{{CD}} = \frac{2}{3}\) hay \(MN = \frac{2}{3}CD = \frac{2}{3} \cdot 6 = 4\).
Vì \(IJ\) là đường trung bình tam giác \(ACD\) nên \(IJ = \frac{1}{2}CD = \frac{1}{2} \cdot 6 = 3\).
Do đó \(2IJ + 3MN = 2 \cdot 3 + 3 \cdot 4 = 18\).
d) \(3IJ + 2MN = 3 \cdot 3 + 2 \cdot 4 = 17\)
Lời giải
Chọn B

Ta có \(\left\{ \begin{array}{l}\left( {ICD} \right) \cap \left( {SCD} \right) = CD\\\left( {ICD} \right) \cap \left( {ABCD} \right) = CD\end{array} \right.\) \(\left( 1 \right)\).
Trong \(\left( {SAC} \right)\), gọi \(E = IC \cap SA \Rightarrow \left( {ICD} \right) \equiv \left( {ECD} \right)\)\( \Rightarrow \left( {ECD} \right) \cap \left( {SAD} \right) = ED\) \(\left( 2 \right)\).
Vì \(AB{\rm{//}}CD\) nên \(\left( {ECD} \right) \cap \left( {SAB} \right)\) theo giao tuyến là đường thẳng đi qua \(E\) và song song với \(AB\), \(CD\) cắt \(SB\) tại \(F\)\( \Rightarrow \left( {ECD} \right) \cap \left( {SAB} \right) = EF\) \(\left( 3 \right)\).
Từ \(\left( 1 \right)\), \(\left( 2 \right)\) và \(\left( 3 \right)\) suy ra mặt phẳng \(\left( {ICD} \right)\) cắt hình chóp theo thiết diện là tứ giác \(CDEF\).
Vì \(EF\,{\rm{//}}\,AB\,{\rm{//}}\,CD\) nên tứ giác \(CDEF\) là hình thang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
