Một bể kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26.

Giải thích tại sao đường mép nước \(AB\) song song với cạnh \(CD\) của bể nước.
Một bể kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26.

Giải thích tại sao đường mép nước \(AB\) song song với cạnh \(CD\) của bể nước.
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:

Giả sử mặt phẳng \((ABFE)\) mà mặt nước, mặt phẳng \((EFCD)\) là mặt đáy của bể kính và \((ABCD)\) là một mặt bên của bể kính.
Ba mặt phẳng \((ABFE)\), \((EFCD)\) và \((ABCD)\) là ba mặt phẳng đôi một cắt nhau theo các giao tuyến \(EF\), \(AB\) và \(CD\). Vì \(DC\parallel EF\) (do đáy của bể là hình chữ nhật) nên ba đường thẳng \(EF,AB\) và \(CD\) đôi một song song. Vậy đường mép nước \(AB\) song song với cạnh \(CD\) của bể nước.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(N\) là giao điểm của \(ME\) và \(BD\) nên \(N\) thuộc cả hai mặt phẳng \((MEF)\) và \((BCD)\).
Tương tự, \(P\) cũng thuộc cả hai mặt phẳng đó nên suy ra \(NP\) là giao tuyến của hai mặt phẳng \((MEF)\) và \((BCD)\).
Vì \(EF\) là đường trung bình của tam giác \(ABC\) nên \(EF//BC\). Hai mặt phẳng \((MEF)\) và \((BCD)\) chứa hai đường thẳng song song là \(EF\) và \(BC\) nên giao tuyến \(NP\) của hai mặt phẳng đó song song với \(EF\) và \(BC\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
b) Xác định giao tuyến của hai mặt phẳng \((GIJ)\) và \((BCD)\):
Vì \(IJ\) là đường trung bình của tam giác \(ACD\) nên \(IJ//CD\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{G \in (GIJ) \cap (BCD)}\\{IJ//CD}\\{IJ \subset (GIJ),CD \subset (BCD)}\end{array} \Rightarrow Gx = (GIJ) \cap (BCD)} \right.\), trong đó \(Gx\) là đường thẳng qua \(G\) và \(Gx//IJ//CD\).
c) Trong mặt phẳng \((BCD)\), kẻ \(Gx\) song song \(CD\) cắt \(BC\) tại \(M\), cắt \(BD\) tại \(N\).
Tính \(2IJ + 3MN\)

Gọi \(E\) là trung điểm \(CD\), theo định lí Thalès, ta có:
\(\frac{{BM}}{{BC}} = \frac{{BG}}{{BE}} = \frac{2}{3}{\rm{ (v\`i }}GM//CE);\frac{{MN}}{{CD}} = \frac{{BM}}{{BC}}{\rm{ (v\`i }}MN//CD{\rm{)}}{\rm{. }}\)
Suy ra \(\frac{{MN}}{{CD}} = \frac{2}{3}\) hay \(MN = \frac{2}{3}CD = \frac{2}{3} \cdot 6 = 4\).
Vì \(IJ\) là đường trung bình tam giác \(ACD\) nên \(IJ = \frac{1}{2}CD = \frac{1}{2} \cdot 6 = 3\).
Do đó \(2IJ + 3MN = 2 \cdot 3 + 3 \cdot 4 = 18\).
d) \(3IJ + 2MN = 3 \cdot 3 + 2 \cdot 4 = 17\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
