Câu hỏi:

06/10/2025 9 Lưu

Cho tứ diện ABCD. Gọi \(I,J\)lần lượt là trọng tâm của tam giác ABC, ABD. Tìm khẳng định đúng trong các khẳng định sau đây.              

A. Hai đường thẳng \[IJ\]\(CD\)cắt nhau.              
B. Hai đường thẳng \[IJ\]\(CD\)chéo nhau.              
C. Hai đường thẳng \[IJ\]\(CD\)song song nhau và \[IJ = \frac{1}{3}CD\].              
D. Hai đường thẳng \[IJ\]\(CD\)song song nhau và \[IJ = \frac{2}{3}CD\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Chọn C   Gọi \[E\]là trung điểm của \[AB\]. Vì \[I,\,\,J\]là trọng tâm của tam giác \[ABC\],\[ABD\] nên \[\frac{{EI}}{{EC}} = \frac{{EJ}}{{ED}} = \frac{1}{3} \Rightarrow IJ\,{\rm{//}}\,CD\]và \[IJ = \frac{1}{3}CD\]. (ảnh 1)

Gọi \[E\]là trung điểm của \[AB\].

Vì \[I,\,\,J\]là trọng tâm của tam giác \[ABC\],\[ABD\] nên \[\frac{{EI}}{{EC}} = \frac{{EJ}}{{ED}} = \frac{1}{3} \Rightarrow IJ\,{\rm{//}}\,CD\]và \[IJ = \frac{1}{3}CD\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Sai

 

Xác định \(M,N\) :

Trong mặt phẳng \((SAC)\), kẻ \(CI\) cắt \(SA\) tại \(M\);

Trong mặt phẳng \((SBD)\), kẻ \(DI\) cắt \(SB\) tại \(N\).

\(\left\{ {\begin{array}{*{20}{l}}{M \in CI,CI \subset (ICD)}\\{M \in SA}\end{array} \Rightarrow M = SA \cap (ICD)} \right.\).

Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{N \in DI,DI \subset (ICD)}\\{N \in SB}\end{array} \Rightarrow N = SB \cap (ICD)} \right.\).

Tính \(MN\) theo \(a\) :

Gọi \(E\) là trung điểm \(BN,OE\) là đường trung bình của tam giác \(BDN\) \( \Rightarrow OE//DN\).

Trong tam giác \(SOE\), ta có \(NI\) qua trung điểm \(I\) của \(SO\)\(NI//OE,N\) là trung điểm của \(SE\).

Cho hình chóp S.ABCD có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,SB\) lần lượt tại \(M,N\). Khi đó: (ảnh 1)

Vậy \(SN = NE = EB\) hay \(SN = \frac{1}{3}SB\).

Hoàn toàn tương tự, ta chứng minh được \(SM = \frac{1}{3}SA\).

Khi đó hai tam giác \(SMN,SAB\) đồng dạng vì có góc \(S\) chung và \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3}\).

Xét tam giác \(SAB\), theo định lí Thalès, ta có:

\(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Rightarrow MN = \frac{{AB}}{3} = \frac{a}{3}{\rm{. }}\)

Chứng minh \(SK//BC//AD\) :

Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SBC)\)\((SAD)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{K \in CN,CN \subset (SBC)}\\{K \in DM,DM \subset (SAD)}\end{array} \Rightarrow K \in (SBC) \cap (SAD)} \right.\).

Vì vậy \(SK = (SBC) \cap (SAD)\).

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{SK = (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD.}\\{BC//AD}\end{array}} \right.\)

Câu 2

A. một tam giác.        
B. một hình thang.              
C. một hình bình hành.                              
D. một hình ngũ giác.

Lời giải

Chọn B

Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {MAB} \right)\] là một hình thang. (ảnh 1)

Ta có \[\left( {ABCD} \right) \cap \left( {SCD} \right) = CD\]; \[\left( {ABCD} \right) \cap \left( {MAB} \right) = AB\]; \[\left( {MAB} \right) \cap \left( {SCD} \right) = d\] và \[AB\,{\rm{//}}\,CD\]nên \[AB\,\,;\,\,CD\,\,;\,\,d\] đôi một song song \[\left( 1 \right)\].

Mặt khác \[M\]là điểm chung của \[\left( {MAB} \right);\,\,\left( {SCD} \right)\] \[\left( 2 \right)\].

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[d\] đi qua\[M\] và song song với \[CD\], cắt \[SD\]tại \[N\].

Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {MAB} \right)\] là một hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{\rm{IJ}}\] song song với \(CD\).     
B. \[{\rm{IJ}}\] song song với \(AB\).              
C. \[{\rm{IJ}}\] chéo \(CD\).                                                       
D. \[{\rm{IJ}}\] cắt \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP