Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng (H.4.16).

Chứng minh rằng bốn điểm \(C,D\),\(E,F\) đồng phẳng và tứ giác \(CDFE\) là hình bình hành.
Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng (H.4.16).
Chứng minh rằng bốn điểm \(C,D\),\(E,F\) đồng phẳng và tứ giác \(CDFE\) là hình bình hành.
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \(EF//AB\) (do \(ABEF\) là hình bình hành) và \(CD//AB\) (do \(ABCD\) là hình bình hành).
Do đó, \(CD\parallel EF\).
Khi đó, hai đường thẳng \(CD\) và \(EF\) đồng phẳng hay bốn điểm \(C,D,E,F\) đồng phẳng.
Lại có \(EF = AB\) và \(CD = AB\) (do \(ABEF\) và \(ABCD\) là các hình bình hành) nên \(CD = EF\).
Vậy tứ giác \(CDFE\) là hình bình hành.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có \[\left( {ABCD} \right) \cap \left( {SCD} \right) = CD\]; \[\left( {ABCD} \right) \cap \left( {MAB} \right) = AB\]; \[\left( {MAB} \right) \cap \left( {SCD} \right) = d\] và \[AB\,{\rm{//}}\,CD\]nên \[AB\,\,;\,\,CD\,\,;\,\,d\] đôi một song song \[\left( 1 \right)\].
Mặt khác \[M\]là điểm chung của \[\left( {MAB} \right);\,\,\left( {SCD} \right)\] \[\left( 2 \right)\].
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[d\] đi qua\[M\] và song song với \[CD\], cắt \[SD\]tại \[N\].
Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {MAB} \right)\] là một hình thang.
Lời giải
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Xác định \(M,N\) :
Trong mặt phẳng \((SAC)\), kẻ \(CI\) cắt \(SA\) tại \(M\);
Trong mặt phẳng \((SBD)\), kẻ \(DI\) cắt \(SB\) tại \(N\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{M \in CI,CI \subset (ICD)}\\{M \in SA}\end{array} \Rightarrow M = SA \cap (ICD)} \right.\).
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{N \in DI,DI \subset (ICD)}\\{N \in SB}\end{array} \Rightarrow N = SB \cap (ICD)} \right.\).
Tính \(MN\) theo \(a\) :
Gọi \(E\) là trung điểm \(BN,OE\) là đường trung bình của tam giác \(BDN\) \( \Rightarrow OE//DN\).
Trong tam giác \(SOE\), ta có \(NI\) qua trung điểm \(I\) của \(SO\) và \(NI//OE,N\) là trung điểm của \(SE\).
Vậy \(SN = NE = EB\) hay \(SN = \frac{1}{3}SB\).
Hoàn toàn tương tự, ta chứng minh được \(SM = \frac{1}{3}SA\).
Khi đó hai tam giác \(SMN,SAB\) đồng dạng vì có góc \(S\) chung và \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3}\).
Xét tam giác \(SAB\), theo định lí Thalès, ta có:
\(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Rightarrow MN = \frac{{AB}}{3} = \frac{a}{3}{\rm{. }}\)
Chứng minh \(SK//BC//AD\) :
Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SBC)\) và \((SAD)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{K \in CN,CN \subset (SBC)}\\{K \in DM,DM \subset (SAD)}\end{array} \Rightarrow K \in (SBC) \cap (SAD)} \right.\).
Vì vậy \(SK = (SBC) \cap (SAD)\).
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{SK = (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD.}\\{BC//AD}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.