Câu hỏi:

06/10/2025 13 Lưu

Cho tứ diện ABCD. Gọi \(G\)\(E\) lần lượt là trọng tâm của tam giác \(ABD\)\(ABC\). Mệnh đề nào dưới đây đúng ?              

A. \(GE{\rm{//}}CD\).                              
B. \(GE\) cắt \(AD\).              
C. \(GE\) cắt \(CD\). 
D. \(GE\)\(CD\) chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho tứ diện \(ABCD\). Gọi \(G\) và \(E\) lần lượt là trọng tâm của tam giác \(ABD\) và \(ABC\). Mệnh đề nào dưới đây đúng ? 	A. \(GE{\rm{//}}CD\).	B. \(GE\) cắt \(AD\). 	C. \(GE\) cắt \(CD\).	D. \(GE\) và \(CD\) chéo nhau. (ảnh 1)

 

Ta có: \(\frac{{AG}}{{AI}} = \frac{{AE}}{{AJ}} = \frac{2}{3}\) \( \Rightarrow EG\parallel IJ\)

Mà \(IJ\parallel CD\) (do \(IJ\) là đường trung bình của tam giác \(BCD\))

\( \Rightarrow EG\parallel CD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(BC\).                  
B. \(AC\).                
C. \(SO\).                       
D. \(BD\).

Lời giải

Chọn B

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(SA\) và \(SC\). Đường thẳng \(IJ\) song song với đường thẳng nào? 	A. \(BC\).	B. \(AC\).	C. \(SO\).	D. \(BD\). (ảnh 1)

 

Dễ dàng thấy được: \(IJ\) là đường trung bình của tam giác \(SAC\) \( \Rightarrow IJ\parallel AC\).

Lời giải

Chọn B

Chọn B  Do \(\frac{{OG}}{{OA}} = \frac{{OH}} (ảnh 1)

 

Do \(\frac{{OG}}{{OA}} = \frac{{OH}}{{OB}} = \frac{1}{3}\) \( \Rightarrow HG\parallel AB\) (Định lý Talet)

Xét tam giác \(ABD\) có: \(MN\parallel AB\) (do \(MN\) là đường trung bình của tam giác)\( \Rightarrow HG\parallel MN\)

Lại có: \(HG \cap CN = G\)

Vậy \(HG\) và \(CD\) chéo nhau.

Câu 3

A. Đường thẳng \(MN\).                            
B. Đường thẳng \(CM\).              
C. Đường thẳng \(DN\).                            
D. Đường thẳng \(CD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP