Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng \(\left( P \right)\) cắt các cạnh \(SA\), \(SB\), \(SC\), \(SD\) lần lượt tại \[M\], \(N\), \(P\), \(Q\). Gọi \(I\) là giao điểm của \(MQ\) và \(NP\). Câu nào sau đây đúng?
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C

Ta có:\(SI = \left( {SBC} \right) \cap \left( {SAD} \right)\)
Do \(\left\{ {\begin{array}{*{20}{c}}{SI = \left( {SAD} \right) \cap \left( {SBC} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AD \subset \left( {SAD} \right)\,;\,\,BC \subset \left( {SBC} \right)\\AD\parallel BC\end{array}\end{array}} \right.\) \( \Rightarrow SI\parallel BC\parallel AD\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in \left( {MAB} \right) \cap \left( {SCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AB \subset \left( {MAB} \right)\,;\,\,CD \subset \left( {SCD} \right)\\AB\parallel CD\end{array}\end{array}} \right.\) \( \Rightarrow Mx = \left( {MAB} \right) \cap \left( {SCD} \right)\) với \(Mx\parallel CD\parallel AB\)
Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)
Vậy \(MN\) song song với \(CD\).
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Có \(SK = (SAB) \cap (SCD)\).
Trong mp (SAB), gọi \(M = KE \cap SB\), có \(KE \subset (CDE)\). Do đó \(SB \cap (CDE) = M\).

b) Trong mp \((SCD)\), gọi \(N = KF \cap SC\), có \(KF \subset (EFM)\).
Do đó \(SC \cap (EFM) = N\).
Có \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MN = (EFK) \cap (SBC)}\\{EF//BC;EF \subset (EFK),BC \subset (SBC)}\end{array}} \right.\)
\( \Rightarrow MN//EF//BC\).
Suy ra tứ giác \(EFNM\) là hình thang.
c) Trong mp \((ADNM)\), gọi \(I = AM \cap DN\).
Mà \(\left\{ {\begin{array}{*{20}{l}}{I \in AM,AM \subset (SAB)}\\{I \in CD,CD \subset (SCD)}\end{array} \Rightarrow I \in (SAB) \cap (SCD)} \right.\),
Hay \(I \in SK\). Kết luận 3 đường thẳng \(AM,DN,SK\) đồng quy tại điểm \(I\).
d) Khi \(AD = 2BC\) dễ dàng chứng minh được \(B,C\) lần lượt là trung điểm của \(KA\) và \(KD\). Suy ra \(M,N\) lần lượt là trọng tâm của hai tam giác \(SAK\) và \(SDK\).
Do đó \(MN = \frac{2}{3}EF\), gọi \({h_1},{h_2}\) lần lượt là độ dài đường cao xuất phát từ đỉnh \(K\) xuống hai đáy \(MN\) và \(EF\), dễ thấy \({h_1} = \frac{2}{3}{h_2}\).
Vậy \(\frac{{{S_{\Delta KMN}}}}{{{S_{\Delta KEF}}}} = \frac{{\frac{1}{2}MN \cdot {h_1}}}{{\frac{1}{2}EF \cdot {h_2}}} = \frac{{\frac{2}{3}EF \cdot \frac{2}{3}{h_2}}}{{EF \cdot {h_2}}} = \frac{4}{9}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.