Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian cho ba đường thẳng \(a,b\) và \(c\) phân biệt. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
b) Nếu hai đường thẳng cùng chéo nhau với đường thẳng thứ ba thì chúng chéo nhau.
c) Nếu đường thẳng \(a\) song song với đường thẳng \(b\), đường thẳng \(b\) và đường thẳng \(c\) chéo nhau thì đường thẳng \(a\) và đường thẳng \(c\) chéo nhau hoặc cắt nhau.
d) Nếu đường thẳng \(a\) cắt \(b\), hai đường thẳng \(b\) và \(c\) chéo nhau thì \(a\) và \(c\) chéo nhau hoặc song song với nhau.
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian cho ba đường thẳng \(a,b\) và \(c\) phân biệt. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
b) Nếu hai đường thẳng cùng chéo nhau với đường thẳng thứ ba thì chúng chéo nhau.
c) Nếu đường thẳng \(a\) song song với đường thẳng \(b\), đường thẳng \(b\) và đường thẳng \(c\) chéo nhau thì đường thẳng \(a\) và đường thẳng \(c\) chéo nhau hoặc cắt nhau.
d) Nếu đường thẳng \(a\) cắt \(b\), hai đường thẳng \(b\) và \(c\) chéo nhau thì \(a\) và \(c\) chéo nhau hoặc song song với nhau.
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Phát biểu A đúng (xem định lí 3).
Phát biểu \({\bf{B}}\) sai. Vì nếu hai đường \(a,c\) chéo nhau và hai đường \(b,c\) chéo nhau thì đường thẳng \(a\) và đường thẳng \(b\) có đến ba khả năng: chéo nhau, song song hoặc cắt nhau.
Phát biểu C đúng.
Phát biểu D sai vì đường thẳng \(a\) có thể cắt cả hai đường chéo nhau là \(b\) và \(c\), tức là đường thẳng \(a\) có thể cắt đường thẳng \(c\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in \left( {MAB} \right) \cap \left( {SCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AB \subset \left( {MAB} \right)\,;\,\,CD \subset \left( {SCD} \right)\\AB\parallel CD\end{array}\end{array}} \right.\) \( \Rightarrow Mx = \left( {MAB} \right) \cap \left( {SCD} \right)\) với \(Mx\parallel CD\parallel AB\)
Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)
Vậy \(MN\) song song với \(CD\).
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Có \(SK = (SAB) \cap (SCD)\).
Trong mp (SAB), gọi \(M = KE \cap SB\), có \(KE \subset (CDE)\). Do đó \(SB \cap (CDE) = M\).

b) Trong mp \((SCD)\), gọi \(N = KF \cap SC\), có \(KF \subset (EFM)\).
Do đó \(SC \cap (EFM) = N\).
Có \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MN = (EFK) \cap (SBC)}\\{EF//BC;EF \subset (EFK),BC \subset (SBC)}\end{array}} \right.\)
\( \Rightarrow MN//EF//BC\).
Suy ra tứ giác \(EFNM\) là hình thang.
c) Trong mp \((ADNM)\), gọi \(I = AM \cap DN\).
Mà \(\left\{ {\begin{array}{*{20}{l}}{I \in AM,AM \subset (SAB)}\\{I \in CD,CD \subset (SCD)}\end{array} \Rightarrow I \in (SAB) \cap (SCD)} \right.\),
Hay \(I \in SK\). Kết luận 3 đường thẳng \(AM,DN,SK\) đồng quy tại điểm \(I\).
d) Khi \(AD = 2BC\) dễ dàng chứng minh được \(B,C\) lần lượt là trung điểm của \(KA\) và \(KD\). Suy ra \(M,N\) lần lượt là trọng tâm của hai tam giác \(SAK\) và \(SDK\).
Do đó \(MN = \frac{2}{3}EF\), gọi \({h_1},{h_2}\) lần lượt là độ dài đường cao xuất phát từ đỉnh \(K\) xuống hai đáy \(MN\) và \(EF\), dễ thấy \({h_1} = \frac{2}{3}{h_2}\).
Vậy \(\frac{{{S_{\Delta KMN}}}}{{{S_{\Delta KEF}}}} = \frac{{\frac{1}{2}MN \cdot {h_1}}}{{\frac{1}{2}EF \cdot {h_2}}} = \frac{{\frac{2}{3}EF \cdot \frac{2}{3}{h_2}}}{{EF \cdot {h_2}}} = \frac{4}{9}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.