Câu hỏi:

06/10/2025 164 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong không gian cho ba đường thẳng \(a,b\)\(c\) phân biệt. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) Nếu hai đường thẳng cùng song song với đường thẳng thứ ba thì chúng song song với nhau.

b) Nếu hai đường thẳng cùng chéo nhau với đường thẳng thứ ba thì chúng chéo nhau.

c) Nếu đường thẳng \(a\) song song với đường thẳng \(b\), đường thẳng \(b\) và đường thẳng \(c\) chéo nhau thì đường thẳng \(a\) và đường thẳng \(c\) chéo nhau hoặc cắt nhau.

d) Nếu đường thẳng \(a\) cắt \(b\), hai đường thẳng \(b\)\(c\) chéo nhau thì \(a\)\(c\) chéo nhau hoặc song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Đúng

d) Sai

 

Phát biểu A đúng (xem định lí 3).

Phát biểu \({\bf{B}}\) sai. Vì nếu hai đường \(a,c\) chéo nhau và hai đường \(b,c\) chéo nhau thì đường thẳng \(a\) và đường thẳng \(b\) có đến ba khả năng: chéo nhau, song song hoặc cắt nhau.

Phát biểu C đúng.

Phát biểu D sai vì đường thẳng \(a\) có thể cắt cả hai đường chéo nhau là \(b\)\(c\), tức là đường thẳng \(a\) có thể cắt đường thẳng \(c\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)  Vậy \(MN\) song song với \(CD\). (ảnh 1)

 

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in \left( {MAB} \right) \cap \left( {SCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AB \subset \left( {MAB} \right)\,;\,\,CD \subset \left( {SCD} \right)\\AB\parallel CD\end{array}\end{array}} \right.\) \( \Rightarrow Mx = \left( {MAB} \right) \cap \left( {SCD} \right)\) với \(Mx\parallel CD\parallel AB\)

Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)

Vậy \(MN\) song song với \(CD\).

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) Có \(SK = (SAB) \cap (SCD)\).

Trong mp (SAB), gọi \(M = KE \cap SB\), có \(KE \subset (CDE)\). Do đó \(SB \cap (CDE) = M\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang (\(AD\) là đáy lớn, \(BC\) là đáy nhỏ). Gọi \(E,F\) lần lượt là trung điểm của \(SA\) và \(SD\). \(K\) là giao điểm của các đường thẳng \(AB\) và \(CD\). Khi đó: (ảnh 1)

b) Trong mp \((SCD)\), gọi \(N = KF \cap SC\), có \(KF \subset (EFM)\).

Do đó \(SC \cap (EFM) = N\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MN = (EFK) \cap (SBC)}\\{EF//BC;EF \subset (EFK),BC \subset (SBC)}\end{array}} \right.\)

\( \Rightarrow MN//EF//BC\).

Suy ra tứ giác \(EFNM\) là hình thang.

c) Trong mp \((ADNM)\), gọi \(I = AM \cap DN\).

\(\left\{ {\begin{array}{*{20}{l}}{I \in AM,AM \subset (SAB)}\\{I \in CD,CD \subset (SCD)}\end{array} \Rightarrow I \in (SAB) \cap (SCD)} \right.\),

Hay \(I \in SK\). Kết luận 3 đường thẳng \(AM,DN,SK\) đồng quy tại điểm \(I\).

d) Khi \(AD = 2BC\) dễ dàng chứng minh được \(B,C\) lần lượt là trung điểm của \(KA\)\(KD\). Suy ra \(M,N\) lần lượt là trọng tâm của hai tam giác \(SAK\)\(SDK\).

Do đó \(MN = \frac{2}{3}EF\), gọi \({h_1},{h_2}\) lần lượt là độ dài đường cao xuất phát từ đỉnh \(K\) xuống hai đáy \(MN\)\(EF\), dễ thấy \({h_1} = \frac{2}{3}{h_2}\).

Vậy \(\frac{{{S_{\Delta KMN}}}}{{{S_{\Delta KEF}}}} = \frac{{\frac{1}{2}MN \cdot {h_1}}}{{\frac{1}{2}EF \cdot {h_2}}} = \frac{{\frac{2}{3}EF \cdot \frac{2}{3}{h_2}}}{{EF \cdot {h_2}}} = \frac{4}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BC\).                  
B. \(AC\).                
C. \(SO\).                       
D. \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP