Cho hình chóp S.ABCD có đáy ABCD là hình thang \((AB//CD)\). Gọi \(M,N\) lần lượt là các điểm thuộc các cạnh \(SA,SD\).
a) Xác định giao tuyến \(d\) của hai mặt phẳng \((MCD)\) và \((NAB)\).
b) Chứng minh rằng \(d//AB\).
                                    
                                                                                                                        Cho hình chóp S.ABCD có đáy ABCD là hình thang \((AB//CD)\). Gọi \(M,N\) lần lượt là các điểm thuộc các cạnh \(SA,SD\).
a) Xác định giao tuyến \(d\) của hai mặt phẳng \((MCD)\) và \((NAB)\).
b) Chứng minh rằng \(d//AB\).
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    
a) Trong mặt phẳng \((SAD)\), gọi \(P\) là giao điểm của \(AN\) và \(DM\).
Trong mặt phẳng \((NAB)\), vẽ đường thẳng \(d\) đi qua \(P\) và song song với \(AB\) thì \(d\) là giao tuyến cần tìm.
b) Theo cách dựng thì \(d\) song song với \(AB\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in \left( {MAB} \right) \cap \left( {SCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AB \subset \left( {MAB} \right)\,;\,\,CD \subset \left( {SCD} \right)\\AB\parallel CD\end{array}\end{array}} \right.\) \( \Rightarrow Mx = \left( {MAB} \right) \cap \left( {SCD} \right)\) với \(Mx\parallel CD\parallel AB\)
Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)
Vậy \(MN\) song song với \(CD\).
Lời giải
| a) Đúng | b) Sai | c) Đúng | d) Sai | 
a) Có \(SK = (SAB) \cap (SCD)\).
Trong mp (SAB), gọi \(M = KE \cap SB\), có \(KE \subset (CDE)\). Do đó \(SB \cap (CDE) = M\).

b) Trong mp \((SCD)\), gọi \(N = KF \cap SC\), có \(KF \subset (EFM)\).
Do đó \(SC \cap (EFM) = N\).
Có \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MN = (EFK) \cap (SBC)}\\{EF//BC;EF \subset (EFK),BC \subset (SBC)}\end{array}} \right.\)
\( \Rightarrow MN//EF//BC\).
Suy ra tứ giác \(EFNM\) là hình thang.
c) Trong mp \((ADNM)\), gọi \(I = AM \cap DN\).
Mà \(\left\{ {\begin{array}{*{20}{l}}{I \in AM,AM \subset (SAB)}\\{I \in CD,CD \subset (SCD)}\end{array} \Rightarrow I \in (SAB) \cap (SCD)} \right.\),
Hay \(I \in SK\). Kết luận 3 đường thẳng \(AM,DN,SK\) đồng quy tại điểm \(I\).
d) Khi \(AD = 2BC\) dễ dàng chứng minh được \(B,C\) lần lượt là trung điểm của \(KA\) và \(KD\). Suy ra \(M,N\) lần lượt là trọng tâm của hai tam giác \(SAK\) và \(SDK\).
Do đó \(MN = \frac{2}{3}EF\), gọi \({h_1},{h_2}\) lần lượt là độ dài đường cao xuất phát từ đỉnh \(K\) xuống hai đáy \(MN\) và \(EF\), dễ thấy \({h_1} = \frac{2}{3}{h_2}\).
Vậy \(\frac{{{S_{\Delta KMN}}}}{{{S_{\Delta KEF}}}} = \frac{{\frac{1}{2}MN \cdot {h_1}}}{{\frac{1}{2}EF \cdot {h_2}}} = \frac{{\frac{2}{3}EF \cdot \frac{2}{3}{h_2}}}{{EF \cdot {h_2}}} = \frac{4}{9}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo