Câu hỏi:

06/10/2025 78 Lưu

Khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau (H.4.29). Hãy giải thích tại sao.

Khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau (H.4.29). Hãy giải thích tại sao.   (ảnh 1)

Nếu hai cánh cửa sổ có dạng hình thang như Hình 4.30 thì có vị trí nào của hai cánh cửa để hai mép ngoài của chúng song song với nhau hay không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mỗi cánh cửa ở Hình 4.29 đều có dạng hình chữ nhật nên các cạnh đối diện của mỗi cánh cửa song song với nhau.

Khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau (H.4.29). Hãy giải thích tại sao.   (ảnh 2)

Khi đó ta có \(a\parallel b\)\(c\parallel d\).

Lại có các đường thằng \(a\)\(d\) là đường thẳng giao tuyến giữa khung cửa và cánh cửa nên \(a\parallel d\).

Do vậy, bốn đường thẳng \(a,b,c,d\) luôn đôi một song song với nhau.

Vậy khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau.

Nếu hai cánh cửa sổ có dạng hình thang như Hình 4.30 thì không có vị trí nào của hai cánh cửa để hai mép ngoài của chúng song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)  Vậy \(MN\) song song với \(CD\). (ảnh 1)

 

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{M \in \left( {MAB} \right) \cap \left( {SCD} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\\begin{array}{l}AB \subset \left( {MAB} \right)\,;\,\,CD \subset \left( {SCD} \right)\\AB\parallel CD\end{array}\end{array}} \right.\) \( \Rightarrow Mx = \left( {MAB} \right) \cap \left( {SCD} \right)\) với \(Mx\parallel CD\parallel AB\)

Gọi \(N = Mx \cap SD\) trong \(\left( {SCD} \right)\) \( \Rightarrow N = SD \cap \left( {MAB} \right)\)

Vậy \(MN\) song song với \(CD\).

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

 

a) Có \(SK = (SAB) \cap (SCD)\).

Trong mp (SAB), gọi \(M = KE \cap SB\), có \(KE \subset (CDE)\). Do đó \(SB \cap (CDE) = M\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang (\(AD\) là đáy lớn, \(BC\) là đáy nhỏ). Gọi \(E,F\) lần lượt là trung điểm của \(SA\) và \(SD\). \(K\) là giao điểm của các đường thẳng \(AB\) và \(CD\). Khi đó: (ảnh 1)

b) Trong mp \((SCD)\), gọi \(N = KF \cap SC\), có \(KF \subset (EFM)\).

Do đó \(SC \cap (EFM) = N\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MN = (EFK) \cap (SBC)}\\{EF//BC;EF \subset (EFK),BC \subset (SBC)}\end{array}} \right.\)

\( \Rightarrow MN//EF//BC\).

Suy ra tứ giác \(EFNM\) là hình thang.

c) Trong mp \((ADNM)\), gọi \(I = AM \cap DN\).

\(\left\{ {\begin{array}{*{20}{l}}{I \in AM,AM \subset (SAB)}\\{I \in CD,CD \subset (SCD)}\end{array} \Rightarrow I \in (SAB) \cap (SCD)} \right.\),

Hay \(I \in SK\). Kết luận 3 đường thẳng \(AM,DN,SK\) đồng quy tại điểm \(I\).

d) Khi \(AD = 2BC\) dễ dàng chứng minh được \(B,C\) lần lượt là trung điểm của \(KA\)\(KD\). Suy ra \(M,N\) lần lượt là trọng tâm của hai tam giác \(SAK\)\(SDK\).

Do đó \(MN = \frac{2}{3}EF\), gọi \({h_1},{h_2}\) lần lượt là độ dài đường cao xuất phát từ đỉnh \(K\) xuống hai đáy \(MN\)\(EF\), dễ thấy \({h_1} = \frac{2}{3}{h_2}\).

Vậy \(\frac{{{S_{\Delta KMN}}}}{{{S_{\Delta KEF}}}} = \frac{{\frac{1}{2}MN \cdot {h_1}}}{{\frac{1}{2}EF \cdot {h_2}}} = \frac{{\frac{2}{3}EF \cdot \frac{2}{3}{h_2}}}{{EF \cdot {h_2}}} = \frac{4}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BC\).                  
B. \(AC\).                
C. \(SO\).                       
D. \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP