Câu hỏi:

06/10/2025 27 Lưu

Trong các không gian hẹp, người ta thường thiết kế tủ đựng quần áo có cánh cửa trượt. Tủ này bao gồm khoang tủ, cánh cửa trượt và hai đường ray trượt cho mép trên và mép dưới cánh cửa (Hình 25\()\). Biết rằng cánh cửa trượt có dạng hình chữ nhật và có thể kéo trượt bình thường, khi đó bạn Minh nói: "Đường ray trượt ở mép trên cửa song song với mặt đáy của tủ quần áo". Em hãy cho biết phát biểu của bạn Minh đúng hay sai? Vì sao?

Trong các không gian hẹp, người ta thường thiết kế tủ đựng quần áo có cánh cửa trượt. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phát biểu của bạn Minh là đúng. Vì cánh cửa là hình chữ nhật và có thể kéo trượt bình thường nên đường ray trên và đường ray dưới của cánh cửa song song với nhau. Đường ray dưới có thể xem là đường thẳng thuộc mặt đáy của tủ. Vì vậy đường ray trượt ở mép trên cánh cửa song song với mặt đáy của tủ quần áo.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Cho hình chóp \(S.ABCD\) có đáy là hình thang, đáy nhỏ \(AB = a\), đáy lớn \(CD = 2a\). Gọi \(E\) là trung điểm của \(SC\). Chứng minh rằng \(BE//(SAD)\). (ảnh 1)

Gọi \(F\) là trung điểm của \(SD\).\(EF\) là đường trung bình của tam giác \(SCD\).

Suy ra \(EF//CD\)\(EF = \frac{1}{2}CD\).

\(AB//CD\)\(AB = \frac{1}{2}CD\). Do đó, \(EF//AB\)\(EF = AB\) hay \(ABEF\) là hình bình hành.

Suy ra \(BE//AF\). Mà \(AF \subset (SAD)\). Vậy \(BE//(SAD)\).

Lời giải

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là hai điểm thuộc hai cạnh \(AB\) và \(CD\). Đặt \((\alpha )\) là mặt phẳng qua \(MN\) và song song với \(BC\). Tìm giao tuyến của \((\alpha )\) với các mặt của tứ diện \(ABCD\). (ảnh 1)

Ta có: \(BC \subset (BCD);N \in (\alpha ) \cap (BCD)\); \((\alpha )//BC\).

Suy ra \((\alpha ) \cap (BCD) = Nx\), vói \(Nx//BC\).

Trong mặt phẳng \((BCD)\), gọi \(P\) là giao điểm của \(Nx\)\(BD\).

Suy ra \(NP = (\alpha ) \cap (BCD)\).

Ta có \(BC \subset (ABC);M \in (\alpha ) \cap (ABC)\);\((\alpha )//BC\).

Suy ra \((\alpha ) \cap (ABC) = My\) với \(My//BC\).

Trong mặt phẳng \((ABC)\), gọi \(Q\) là giao điểm của \(My\)\(AC\).

Suy ra \(MQ = (\alpha ) \cap (ABC)\).

Từ đó, dễ thấy: \((\alpha ) \cap (ABD) = MP;(\alpha ) \cap (ACD) = QN\).

Câu 3

A. \(PQ\;{\rm{//}}\;\left( {BCD} \right)\).                     
B. \(GQ\;{\rm{//}}\;\left( {BCD} \right)\).              
C. \(PQ\;{\rm{//}}\;\left( {ACD} \right)\).                     
D. \(Q \in \left( {GDP} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

 Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\)\(AD\).

Chứng minh rằng \(MN//(BCD)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP