Câu hỏi:

06/10/2025 260 Lưu

Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.

Cho tứ diện \(ABCD\), điểm \(I\) nằm trong tam giác \(ABC\), mặt phẳng \(\left( \alpha \right)\) đi qua \(I\) và song song với \(AB,CD\). Thiết diện của tứ diện \(ABCD\) và mặt phẳng \(\left( \alpha \right)\)              

A. hình chữ nhật.       
B. hình vuông.              
C. hình bình hành.     
D. tam giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có: \(\left\{ \begin{array}{l}ON\;{\rm{//}}\;QP\;{\rm{//}}\;AB\\OQ\;{\rm{//}}\;NP\;{\rm{//}}\;CD\end{array} \right.\) nên thiết diện tạo thành là hình bình hành \(ONPQ\). (ảnh 1)

Xét trong \(\left( {ABC} \right)\) ta có: \(\left\{ \begin{array}{l}I \in \left( \alpha  \right) \cap \left( {ABC} \right)\\\left( \alpha  \right)\;{\rm{//}}\;AB\end{array} \right. \Rightarrow \left( \alpha  \right) \cap \left( {ABC} \right) = ON\;{\rm{//}}\;AB\), với \(I \in ON;O \in AC;N \in BC\).

Xét trong \(\left( {ADC} \right)\) ta có: \(\left\{ \begin{array}{l}O \in \left( \alpha  \right) \cap \left( {ADC} \right)\\\left( \alpha  \right)\;{\rm{//}}\;CD\end{array} \right. \Rightarrow \left( \alpha  \right) \cap \left( {ADC} \right) = OQ\;{\rm{//}}\;CD\), với \(Q \in AD\).

Xét trong \(\left( {BDC} \right)\) ta có: \(\left\{ \begin{array}{l}N \in \left( \alpha  \right) \cap \left( {BDC} \right)\\\left( \alpha  \right)\;{\rm{//}}\;CD\end{array} \right. \Rightarrow \left( \alpha  \right) \cap \left( {BDC} \right) = NP{\rm{//}}\;CD\), với \(P \in PD\).

Suy ra \(\left( \alpha  \right) \cap \left( {ABD} \right) = PQ\;{\rm{//}}\;AB\).

Ta có: \(\left\{ \begin{array}{l}ON\;{\rm{//}}\;QP\;{\rm{//}}\;AB\\OQ\;{\rm{//}}\;NP\;{\rm{//}}\;CD\end{array} \right.\) nên thiết diện tạo thành là hình bình hành \(ONPQ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳ (ảnh 1)

Trong \(\left( {SAB} \right)\), kẻ đường thẳng qua \(M\) song song với \(SA\) cắt \(SB\) tại \(F\).

Trong \(\left( {SBC} \right)\), kẻ đường thẳng qua \(F\) song song với \(BC\) cắt \(SC\) tại \(E\).

Trong \(\left( {ABCD} \right)\), kẻ đường thẳng qua \(M\) song song với \(BC\) cắt \(CD\) tại \(N\).

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳng \(\left( P \right)\) là hình thang \(FENM\) vì có \(FE\;{\rm{//}}\;MN\) (cùng song song với \(BC\)).

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình b (ảnh 1)

a) b) c) Tứ giác \(MNPQ\) là hình gì?

\(\begin{array}{l}{\rm{ Ta co\`u : }}\left\{ {\begin{array}{*{20}{l}}{MN = (\alpha ) \cap (ABCD)}\\{CD//(\alpha )}\\{CD \subset (ABCD)}\end{array} \Rightarrow (\alpha ) \cap (ABCD) = MN//CD} \right.{\rm{.(1) }}\\{\rm{ T\"o \^o ng t\"o \"i : }}\left\{ {\begin{array}{*{20}{l}}{MQ = (\alpha ) \cap (SAD)}\\{SA//(\alpha )}\\{SA \subset (SAD)}\end{array} \Rightarrow (\alpha ) \cap (SAD) = MQ//SA} \right.{\rm{; }}\\\left\{ {\begin{array}{*{20}{l}}{PQ = (\alpha ) \cap (SCD)}\\{CD//(\alpha )}\\{CD \subset (SCD)}\end{array} \Rightarrow (\alpha ) \cap (SCD) = PQ//CD} \right.(2)\\\end{array}\)

Từ (1) và (2) suy ra tứ giác \(MNPQ\) là hình thang có hai đáy là \(MN\)\(PQ\).

d) Xét \((SAD) \cap (SBC)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD//BC}\\{AD \subset (SAD),BC \subset (SBC)}\end{array} \Rightarrow (SAD) \cap (SBC) = Sx} \right.\)

(với \(Sx\) qua \(S\)\(Sx//AD//BC\)).

\({\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{I \in NP,NP \subset (SBC)}\\{I \in MQ,MQ \subset (SAD)}\end{array} \Rightarrow I \in (SAD) \cap (SBC)} \right.{\rm{. }}\)

Suy ra \(I \in Sx\) (với \(Sx\) cố định).

Câu 4

A. \(MN\)cắt \(BD\). 
B. \(MN\,{\rm{//}}\,\left( {BCD} \right)\).              
C. \(MN\,{\rm{//}}\,CD\).                        
D. \(AC\)cắt \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\)\(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?

a) \(PQ\) cắt \(\left( {ABCD} \right)\).                      

b) \(PQ \subset \left( {ABCD} \right)\).

c) \(PQ//\left( {ABCD} \right)\).                                 

d) \(PQ\)\(CD\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP