Cho tứ diện \[ABCD\]. Gọi \[{G_1}\]và \[{G_2}\]lần lượt là trọng tâm các tam giác \[BCD\]và \[ACD\]. Chọn khẳng định sai?
Quảng cáo
Trả lời:

Chọn D
\[{G_1}\]và \[{G_2}\]lần lượt là trọng tâm các tam giác \[BCD\]và \[ACD\]nên \[B{G_1}\], \[A{G_2}\]và \[CD\]đồng qui tại \(M\)với \(M\)là trung điểm \(CD\).
Vì \[{G_1}{G_2}{\rm{//}}AB\]nên \[{G_1}{G_2}{\rm{//}}\left( {ABD} \right)\]và \[{G_1}{G_2}{\rm{//}}\left( {ABC} \right)\].
Lại có \(\frac{{{G_1}{G_2}}}{{AB}} = \frac{{M{G_1}}}{{MB}} = \frac{1}{3}\)\( \Rightarrow \)\[{G_1}{G_2} = \frac{1}{3}AB\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
*) Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);
Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)
*) \[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)
*) \(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành
\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).
Câu 2
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\) và \(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp.
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\) và \(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp.
Lời giải
Gọi \(N,P,R\) lần lượt là trung điểm của \(AD,SD,SB\). Trong mặt phẳng \((SAB)\) vẽ đường thẳng \(d\) đi qua \(S\) và \(d//AB//CD\). \(MR\) cắt \(d\) tại \(I,PI\) cắt \(SC\) tại \(Q\).
Suy ra: \((\alpha ) \cap (ABCD) = MN\), \((P) \cap (SAD) = NP,(\alpha ) \cap (SCD) = PQ\),
\((\alpha ) \cap (SBC) = QR,(\alpha ) \cap (SAB) = MR\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.