Câu hỏi:

06/10/2025 127 Lưu

Cho hình chóp \[S.ABC\]\[E,{\rm{ }}F\] lần lượt là trung điểm cạnh \[AB,{\rm{ }}BC\] và điểm \[G\] thỏa mãn \[\overrightarrow {SG} = \frac{1}{2}\overrightarrow {SC} \]. Thiết diện của hình chóp \[S.ABC\] khi cắt bởi mặt phẳng \[\left( {EFG} \right)\] là hình nào dưới đây?              

A. Tam giác.             
B. Hình bình hành.              
C. Hình thang chỉ có một cặp cạnh song song.              
D. Hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \[S.ABC\] có \[E,{\rm{ }}F\] lần lượt là trung điểm cạnh \[AB,{\rm{ }}BC\] và điểm \[G\] thỏa mãn \[\overrightarrow {SG}  = \ (ảnh 1)

Chọn B

Ta có \[EF\] là đường trung bình trong tam giác \[ABC,\] suy ra \[EF//AC{\rm{  }}\left( 1 \right)\].

\[\left. \begin{array}{l}\left( {EFG} \right) \cap \left( {SAC} \right) = \left\{ G \right\}\\EF \subset \left( {EFG} \right)\\AC \subset \left( {SAC} \right)\\EF//AC\end{array} \right\} \Rightarrow \] \[\left( {EFG} \right) \cap \left( {SAC} \right) = Gx//FE//AC\]

Gọi \[Gx \cap SA = \left\{ H \right\}\], suy ra \[H\] là trung điểm \[SA\] và \[HG//AC{\rm{     }}\left( 2 \right)\]

Ta có \[\overrightarrow {SG}  = \frac{1}{2}\overrightarrow {SC} ,\] suy ra \[G\] là trung điểm của \[SC\] và \[GF//SB{\rm{       }}\left( 3 \right)\].

Ta có \[HE\] là đường trung bình trong tam giác \[SAB,\]suy ra \[HE//SB{\rm{       }}\left( 4 \right)\]

Từ \[\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)\] suy ra thiết diện là hình bình hành \[FGHE\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳ (ảnh 1)

Trong \(\left( {SAB} \right)\), kẻ đường thẳng qua \(M\) song song với \(SA\) cắt \(SB\) tại \(F\).

Trong \(\left( {SBC} \right)\), kẻ đường thẳng qua \(F\) song song với \(BC\) cắt \(SC\) tại \(E\).

Trong \(\left( {ABCD} \right)\), kẻ đường thẳng qua \(M\) song song với \(BC\) cắt \(CD\) tại \(N\).

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳng \(\left( P \right)\) là hình thang \(FENM\) vì có \(FE\;{\rm{//}}\;MN\) (cùng song song với \(BC\)).

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình b (ảnh 1)

a) b) c) Tứ giác \(MNPQ\) là hình gì?

\(\begin{array}{l}{\rm{ Ta co\`u : }}\left\{ {\begin{array}{*{20}{l}}{MN = (\alpha ) \cap (ABCD)}\\{CD//(\alpha )}\\{CD \subset (ABCD)}\end{array} \Rightarrow (\alpha ) \cap (ABCD) = MN//CD} \right.{\rm{.(1) }}\\{\rm{ T\"o \^o ng t\"o \"i : }}\left\{ {\begin{array}{*{20}{l}}{MQ = (\alpha ) \cap (SAD)}\\{SA//(\alpha )}\\{SA \subset (SAD)}\end{array} \Rightarrow (\alpha ) \cap (SAD) = MQ//SA} \right.{\rm{; }}\\\left\{ {\begin{array}{*{20}{l}}{PQ = (\alpha ) \cap (SCD)}\\{CD//(\alpha )}\\{CD \subset (SCD)}\end{array} \Rightarrow (\alpha ) \cap (SCD) = PQ//CD} \right.(2)\\\end{array}\)

Từ (1) và (2) suy ra tứ giác \(MNPQ\) là hình thang có hai đáy là \(MN\)\(PQ\).

d) Xét \((SAD) \cap (SBC)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD//BC}\\{AD \subset (SAD),BC \subset (SBC)}\end{array} \Rightarrow (SAD) \cap (SBC) = Sx} \right.\)

(với \(Sx\) qua \(S\)\(Sx//AD//BC\)).

\({\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{I \in NP,NP \subset (SBC)}\\{I \in MQ,MQ \subset (SAD)}\end{array} \Rightarrow I \in (SAD) \cap (SBC)} \right.{\rm{. }}\)

Suy ra \(I \in Sx\) (với \(Sx\) cố định).

Câu 4

A. \(MN\)cắt \(BD\). 
B. \(MN\,{\rm{//}}\,\left( {BCD} \right)\).              
C. \(MN\,{\rm{//}}\,CD\).                        
D. \(AC\)cắt \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\)\(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?

a) \(PQ\) cắt \(\left( {ABCD} \right)\).                      

b) \(PQ \subset \left( {ABCD} \right)\).

c) \(PQ//\left( {ABCD} \right)\).                                 

d) \(PQ\)\(CD\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP