Câu hỏi:

06/10/2025 262 Lưu

Cho hình chóp \[S.ABC\]\[E,{\rm{ }}F\] lần lượt là trung điểm cạnh \[AB,{\rm{ }}BC\] và điểm \[G\] thỏa mãn \[\overrightarrow {SG} = \frac{1}{2}\overrightarrow {SC} \]. Thiết diện của hình chóp \[S.ABC\] khi cắt bởi mặt phẳng \[\left( {EFG} \right)\] là hình nào dưới đây?              

A. Tam giác.             
B. Hình bình hành.              
C. Hình thang chỉ có một cặp cạnh song song.              
D. Hình thoi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \[S.ABC\] có \[E,{\rm{ }}F\] lần lượt là trung điểm cạnh \[AB,{\rm{ }}BC\] và điểm \[G\] thỏa mãn \[\overrightarrow {SG}  = \ (ảnh 1)

Chọn B

Ta có \[EF\] là đường trung bình trong tam giác \[ABC,\] suy ra \[EF//AC{\rm{  }}\left( 1 \right)\].

\[\left. \begin{array}{l}\left( {EFG} \right) \cap \left( {SAC} \right) = \left\{ G \right\}\\EF \subset \left( {EFG} \right)\\AC \subset \left( {SAC} \right)\\EF//AC\end{array} \right\} \Rightarrow \] \[\left( {EFG} \right) \cap \left( {SAC} \right) = Gx//FE//AC\]

Gọi \[Gx \cap SA = \left\{ H \right\}\], suy ra \[H\] là trung điểm \[SA\] và \[HG//AC{\rm{     }}\left( 2 \right)\]

Ta có \[\overrightarrow {SG}  = \frac{1}{2}\overrightarrow {SC} ,\] suy ra \[G\] là trung điểm của \[SC\] và \[GF//SB{\rm{       }}\left( 3 \right)\].

Ta có \[HE\] là đường trung bình trong tam giác \[SAB,\]suy ra \[HE//SB{\rm{       }}\left( 4 \right)\]

Từ \[\left( 1 \right),\left( 2 \right),\left( 3 \right),\left( 4 \right)\] suy ra thiết diện là hình bình hành \[FGHE\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

a) b) Do \(I,J\) lần lượt là trọng tâm của tam giác \(SAB\)\(SCD\) nên

\(\frac{{SI}}{{SE}} = \frac{{SJ}}{{SF}} = \frac{2}{3} \Rightarrow IJ//EF{\rm{ m\`a }}EF \subset (ABCD) \Rightarrow IJ//(ABCD){\rm{. }}\)

Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình bình hành. Gọi \(I (ảnh 1)

c) d) Vì \(BC//AD,AD \subset (SAD) \Rightarrow BC//(SAD)\).

\(EF\) là đường trung bình của hình bình hành \(ABCD\) nên

\(BC//EF,EF \subset (SEF) \Rightarrow BC//(SEF){\rm{. }}\)Ta có: \(IJ//EF,EF//BC \Rightarrow BC//IJ\)\(IJ \subset (AIJ) \Rightarrow BC//(AIJ)\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

\((\alpha )//AB\) nên giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABC)\) là đường thẳng đi qua \(M\) và song song với \(AB\) và cắt \(AC\) tại \(Q\).

\((\alpha )//CD\) nên giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((BCD)\) là đường thẳng đi qua \(M\) và song song với \(CD\) và cắt \(BD\) tại \(N\).

\((\alpha )//AB\) nên giao tuyến của mặt phẳng \((\alpha )\).với mặt phẳng \((ABD)\) là đường thẳng đi qua \(N\) và song song với \(AB\) và cắt \(AD\) tại \(P\).

Ta có \(MN//PQ//CD,MQ//PN//AB\).

Vậy hình tạo bởi các giao tuyến của mặt phẳng \((\alpha )\) với các mặt của tứ diện (ta gọi là thiết diện) là hình bình hành \(MNPQ\).

Cho tứ diện \(ABCD\). Giả sử \(M\) thuộc đoạn thẳng \(BC\). Mặt (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(MN\)cắt \(BD\). 
B. \(MN\,{\rm{//}}\,\left( {BCD} \right)\).              
C. \(MN\,{\rm{//}}\,CD\).                        
D. \(AC\)cắt \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP