Câu hỏi:

06/10/2025 9 Lưu

Cho tứ diện \(ABCD\)và điểm M thay đổi trên cạnh AB (M không trùng với các đỉnh). Thiết diện của tứ diện tạo bởi mặt phẳng qua M, song song với hai đường thẳng AC BD luôn là              

A. một tam giá.              
B. một ngũ giá.             
C. một tứ giác có hai đường chéo vuông góc nhau.              
D. một tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Chọn D   Từ M dựng đường thẳng song song \(AC\), cắt \(BC\)tại \(N\)thì \(MN\)chứa trong mặt phẳng cần tìm. Từ M dựng đường thẳng song song \(BD\), cắc \(MNPQ,\)tứ giác này có hai cặp cạnh đối song song nên là hình bình hành. (ảnh 1)

Từ M dựng đường thẳng song song \(AC\), cắt \(BC\)tại \(N\)thì \(MN\)chứa trong mặt phẳng cần tìm.

Từ M dựng đường thẳng song song \(BD\), cắt \(AD\)tại \(Q\)thì \(MQ\)chứa trong mặt phẳng cần tìm.

Vậy mặt phẳng qua M, song song với hai đường thẳng AC và BD chính là mặt phẳng \(\left( {MNQ} \right)\).

Từ N dựng đường thẳng song song \(BD\), cắt \(CD\)tại \(P\)thì \(NP \subset \left( {MNQ} \right)\).

Thiết diện là tứ giác \(MNPQ,\)tứ giác này có hai cặp cạnh đối song song nên là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lăng trụ \(ABC.A'B'C'\). \(M,N\) là trung điểm của \(A'C',BC\). Chứng minh \(MN\;{\rm{//}}\;\left( {ABB'A'} \right)\) (ảnh 1)

*) Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);

Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)

*) \[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)

*) \(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành

\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).

Câu 2

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\)\(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp.

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\) và \(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp. (ảnh 1)

Gọi \(N,P,R\) lần lượt là trung điểm của \(AD,SD,SB\). Trong mặt phẳng \((SAB)\) vẽ đường thẳng \(d\) đi qua \(S\)\(d//AB//CD\). \(MR\) cắt \(d\) tại \(I,PI\) cắt \(SC\) tại \(Q\).

Suy ra: \((\alpha ) \cap (ABCD) = MN\), \((P) \cap (SAD) = NP,(\alpha ) \cap (SCD) = PQ\),

\((\alpha ) \cap (SBC) = QR,(\alpha ) \cap (SAB) = MR\).

Câu 5

A. \(MN\,{\rm{//}}\,\,\left( {SAC} \right).\)                     
B. \(MN\,\,{\rm{//}}\,\,\left( {SAB} \right).\)              
C. \(MN\,{\rm{//}}\,\left( {SBC} \right).\)                     
D. \(MN\,{\rm{//}}\,\,\left( {SAD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hình thoi.             
B. Hình chữ nhật.              
C. Hình vuông.          
D. Hình tam giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP