Câu hỏi:

06/10/2025 12 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\)\(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?

a) \(PQ\) cắt \(\left( {ABCD} \right)\).                      

b) \(PQ \subset \left( {ABCD} \right)\).

c) \(PQ//\left( {ABCD} \right)\).                                 

d) \(PQ\)\(CD\) chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Sai

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng? (ảnh 1)

\(\left\{ \begin{array}{l}PQ//AB\\AB \subset \left( {ABCD} \right)\\PQ\overline \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow PQ//\left( {ABCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lăng trụ \(ABC.A'B'C'\). \(M,N\) là trung điểm của \(A'C',BC\). Chứng minh \(MN\;{\rm{//}}\;\left( {ABB'A'} \right)\) (ảnh 1)

*) Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);

Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)

*) \[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)

*) \(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành

\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).

Câu 2

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\)\(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp.

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\) và \(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp. (ảnh 1)

Gọi \(N,P,R\) lần lượt là trung điểm của \(AD,SD,SB\). Trong mặt phẳng \((SAB)\) vẽ đường thẳng \(d\) đi qua \(S\)\(d//AB//CD\). \(MR\) cắt \(d\) tại \(I,PI\) cắt \(SC\) tại \(Q\).

Suy ra: \((\alpha ) \cap (ABCD) = MN\), \((P) \cap (SAD) = NP,(\alpha ) \cap (SCD) = PQ\),

\((\alpha ) \cap (SBC) = QR,(\alpha ) \cap (SAB) = MR\).

Câu 6

A. \(MN\,{\rm{//}}\,\,\left( {SAC} \right).\)                     
B. \(MN\,\,{\rm{//}}\,\,\left( {SAB} \right).\)              
C. \(MN\,{\rm{//}}\,\left( {SBC} \right).\)                     
D. \(MN\,{\rm{//}}\,\,\left( {SAD} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP