Câu hỏi:

06/10/2025 1,138 Lưu

Cho tứ diện \(ABCD\). Gọi \(I,J\) lần lượt là trọng tâm của hai tam giác \(ABC\), \(ACD\). Chứng minh rằng \(IJ//(BCD)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(M,N\) lần lượt là trung điểm của \(BC,CD\).

Cho tứ diện \(ABCD\). Gọi \(I,J\) lần lượt là trọng tâm của hai tam giác \(ABC\), \(ACD\). Chứng minh rằng \(IJ//(BCD)\). (ảnh 1)

Suy ra \(MN\) là đường trung bình của tam giác \(BCD\). Suy ra \(MN//BD\). (1)

Mặt khác, \(I,J\) lần lượt là trọng tâm của tam giác \(ABC\)\(ACD\) nên \(\frac{{AI}}{{AM}} = \frac{{AJ}}{{AN}} = \frac{2}{3}\).

Theo định lí Thalès đảo trong tam giác \(AMN\), ta có \(IJ//MN\). (2)

Từ (1) và (2) suy ra \(IJ//BD\).

\(BD \subset (BCD)\) nên \(IJ//(BCD)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

a) b) Do \(I,J\) lần lượt là trọng tâm của tam giác \(SAB\)\(SCD\) nên

\(\frac{{SI}}{{SE}} = \frac{{SJ}}{{SF}} = \frac{2}{3} \Rightarrow IJ//EF{\rm{ m\`a }}EF \subset (ABCD) \Rightarrow IJ//(ABCD){\rm{. }}\)

Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình bình hành. Gọi \(I (ảnh 1)

c) d) Vì \(BC//AD,AD \subset (SAD) \Rightarrow BC//(SAD)\).

\(EF\) là đường trung bình của hình bình hành \(ABCD\) nên

\(BC//EF,EF \subset (SEF) \Rightarrow BC//(SEF){\rm{. }}\)Ta có: \(IJ//EF,EF//BC \Rightarrow BC//IJ\)\(IJ \subset (AIJ) \Rightarrow BC//(AIJ)\).

Lời giải

Lăng trụ \(ABC.A'B'C'\). \(M,N\) là trung điểm của \(A'C',BC\). Chứng minh \(MN\;{\rm{//}}\;\left( {ABB'A'} \right)\) (ảnh 1)

*) Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);

Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)

*) \[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)

*) \(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành

\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).

Câu 4

A. \(MN\)cắt \(BD\). 
B. \(MN\,{\rm{//}}\,\left( {BCD} \right)\).              
C. \(MN\,{\rm{//}}\,CD\).                        
D. \(AC\)cắt \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \((\alpha )\) là mặt phẳng đi qua trung điểm \(M\) của cạnh \(AB\), song song với \(BD\)\(SA\). Tìm giao tuyến của mặt phẳng \((\alpha )\) với các mặt của hình chóp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP