Câu hỏi:

06/10/2025 37 Lưu

Để dựng dây phơi quần áo, bác Việt lắp hai thanh sắt thẳng đứng có chiều dài bằng nhau trên mặt đất và căng dây nối hai đầu còn lại của hai thanh sắt (H.4.19).

Để dựng dây phơi quần áo, bác Việt lắp hai thanh sắt thẳng đứng có chiều dài bằng nhau trên mặt đất và căng dây nối hai đầu còn lại của hai thanh sắt (H.4.19).    Khi đó, dây phơi có song song với mặt đất không? Giải thích vì sao. (ảnh 1)

Khi đó, dây phơi có song song với mặt đất không? Giải thích vì sao.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để dựng dây phơi quần áo, bác Việt lắp hai thanh sắt thẳng đứng có chiều dài bằng nhau trên mặt đất và căng dây nối hai đầu còn lại của hai thanh sắt (H.4.19).    Khi đó, dây phơi có song song với mặt đất không? Giải thích vì sao. (ảnh 2)

Gọi hai đầu của hai thanh sắt trên mặt đất là \(A,B\) và hai đầu tương ứng còn lại là \(M,N\) thì \(AM//BN\)\(AM = BN\), suy ra \(ABNM\) là hình bình hành. Vì vậy \(MN//AB\) và do đó dây phơi (nối hai điểm \(M,N\)) song song với mặt đất (chứa đường thẳng \(AB\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳ (ảnh 1)

Trong \(\left( {SAB} \right)\), kẻ đường thẳng qua \(M\) song song với \(SA\) cắt \(SB\) tại \(F\).

Trong \(\left( {SBC} \right)\), kẻ đường thẳng qua \(F\) song song với \(BC\) cắt \(SC\) tại \(E\).

Trong \(\left( {ABCD} \right)\), kẻ đường thẳng qua \(M\) song song với \(BC\) cắt \(CD\) tại \(N\).

Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳng \(\left( P \right)\) là hình thang \(FENM\) vì có \(FE\;{\rm{//}}\;MN\) (cùng song song với \(BC\)).

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình b (ảnh 1)

a) b) c) Tứ giác \(MNPQ\) là hình gì?

\(\begin{array}{l}{\rm{ Ta co\`u : }}\left\{ {\begin{array}{*{20}{l}}{MN = (\alpha ) \cap (ABCD)}\\{CD//(\alpha )}\\{CD \subset (ABCD)}\end{array} \Rightarrow (\alpha ) \cap (ABCD) = MN//CD} \right.{\rm{.(1) }}\\{\rm{ T\"o \^o ng t\"o \"i : }}\left\{ {\begin{array}{*{20}{l}}{MQ = (\alpha ) \cap (SAD)}\\{SA//(\alpha )}\\{SA \subset (SAD)}\end{array} \Rightarrow (\alpha ) \cap (SAD) = MQ//SA} \right.{\rm{; }}\\\left\{ {\begin{array}{*{20}{l}}{PQ = (\alpha ) \cap (SCD)}\\{CD//(\alpha )}\\{CD \subset (SCD)}\end{array} \Rightarrow (\alpha ) \cap (SCD) = PQ//CD} \right.(2)\\\end{array}\)

Từ (1) và (2) suy ra tứ giác \(MNPQ\) là hình thang có hai đáy là \(MN\)\(PQ\).

d) Xét \((SAD) \cap (SBC)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD//BC}\\{AD \subset (SAD),BC \subset (SBC)}\end{array} \Rightarrow (SAD) \cap (SBC) = Sx} \right.\)

(với \(Sx\) qua \(S\)\(Sx//AD//BC\)).

\({\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{I \in NP,NP \subset (SBC)}\\{I \in MQ,MQ \subset (SAD)}\end{array} \Rightarrow I \in (SAD) \cap (SBC)} \right.{\rm{. }}\)

Suy ra \(I \in Sx\) (với \(Sx\) cố định).

Câu 5

A. \(MN\)cắt \(BD\). 
B. \(MN\,{\rm{//}}\,\left( {BCD} \right)\).              
C. \(MN\,{\rm{//}}\,CD\).                        
D. \(AC\)cắt \(BD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\)\(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?

a) \(PQ\) cắt \(\left( {ABCD} \right)\).                      

b) \(PQ \subset \left( {ABCD} \right)\).

c) \(PQ//\left( {ABCD} \right)\).                                 

d) \(PQ\)\(CD\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP