Câu hỏi:

06/10/2025 12 Lưu

Cho hình chóp \(S.ABCD\), gọi \(E\), \(F\) lần lượt là các điểm thuộc các cạnh \(AB,CD\,\). \(M,N,P,Q\) lần lượt là trung điểm của các cạnh \(SA,SB,SC,SD\). Hãy xác định giao tuyến của mặt phẳng \[\left( {EMQ} \right)\]và mặt phẳng \((ABCD)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\), gọi \(E\), \(F\) lần lượt là c (ảnh 1)

Trong Ví dụ 2, ta đã chứng minh được hai mặt phẳng \((MNPQ)\)\((ABCD)\) song song với nhau. Vì vậy hai giao tuyến của mặt phẳng \((EMQ)\) với hai mặt phẳng \((MNPQ)\)\((ABCD)\) song song với nhau. Ta có \((EMQ) \cap (MNPQ) = MQ\). Trong mặt phẳng \((MEQ)\), qua \(E\) vẽ đường thằng song song với \(MQ\) cắt \(CD\) tại \(H\,(EH//MQ//AD)\) thì đường thẳng \(EH\) là giao tuyến của hai mặt phằng \((EMQ)\) và mặt phẳng \((ABCD)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) b) Vì \(MN\) là đường trung bình của tam giác \(SAD\)

nên \(MN//AD \Rightarrow MN//BC \Rightarrow MN//(SBC)\). (1)

Tương tự, ta có \(O,N\) theo thứ tự là trung điểm của \(BD,SD\) nên \(ON\) là đường trung bình của tam giác \(SBD \Rightarrow ON//SB \Rightarrow ON//(SBC)\). (2)

Từ (1) và \((2)\) suy ra \((OMN)//(SBC)\).

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \( (ảnh 1)

c) Ta có \(OE\) là đường trung bình của tam giác \(ABD\) nên \(OE//AD \Rightarrow OE//MN\).

Do đó \(E \in (OMN)\). Mặt khác \(F \in ON,ON \subset (OMN) \Rightarrow F \in (OMN)\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{EF \subset (OMN)}\\{(OMN)//(SBC)}\end{array} \Rightarrow EF//(SBC)} \right.\).

d)

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \( (ảnh 2)

\(G\) thuộc mặt phẳng \((ABCD)\) và cách đều \(AB,CD\) nên \(G\) thuộc đường trung bình của hình bình hành \(ABCD\) (ứng với hai cạnh \(AB,CD\)).

Gọi \(I\) là trung điểm \(BC\) thì \(I,O,G\) thẳng hàng.

Ta có \(OI\) là đường trung bình của \(\Delta ABC\) nên \(OI//AB \Rightarrow OI//(SAB)\).(3)

Tương tự, ta có \(ON//SB \Rightarrow ON//(SAB)\).(4)

Từ (3), (4) suy ra \((OIN)//(SAB)\)\(NG \subset (OIN)\) nên \(NG//(SAB)\).

Câu 2

A. \[BB'DC\] là một tứ giác đều.                            
B. \[\left( {BA'D'} \right)\]\[\left( {ADC'} \right)\] cắt nhau.              
C. \[A'B'CD\] là hình bình hành.               
D. \[\left( {AA'B'B} \right){\rm{//}}\left( {DD'C'C} \right)\].

Lời giải

Chọn A

Cho hình hộp \[ABCD.A'B'C'D'\] có các cạnh bên\[AA',BB',CC',DD'\]. Khẳng định nào sai? (ảnh 1)

Câu A, C đúng do tính chất của hình hộp.

\(\left( {BA'D'} \right) \equiv \left( {BA'D'C} \right);\left( {ADC'} \right) \equiv \left( {ADC'B'} \right)\)

\[\left( {BA'D'} \right)\]\[ \cap \left( {ADC'} \right) = ON\]. Câu B đúng.

Do \[B' \notin \left( {BDC} \right)\] nên \[BB'DC\] không phải là tứ giác.

Câu 3

A. \(\left( {SBC} \right)\).                         
B. \(\left( {SCD} \right)\).        
C. \(\left( {ABCD} \right)\).                     
D. \(\left( {SAB} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( \alpha \right)//\left( \beta \right) \Rightarrow a//\left( \beta \right)\) \(b//\left( \alpha \right).\)                     
B. \(a//b \Rightarrow \left( \alpha \right)//\left( \beta \right).\)              
C. a và b chéo nhau.  
D. \(\left( \alpha \right)//\left( \beta \right) \Rightarrow a//b.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {BCA'} \right)\].                        
B. \[\left( {BC'D} \right)\].       
C. \[\left( {A'C'C} \right)\].                     
D. \[\left( {BDA'} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Một tam giác đều. 
B. Một tam giác thường.              
C. Một hình chữ nhật.                               
D. Một hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP