Câu hỏi:

06/10/2025 45 Lưu

Tìm \(I = \lim \frac{{7{n^2} - 2{n^3} + 1}}{{3{n^3} + 2{n^2} + 1}}.\)

A. \(\frac{7}{3}\).     
B. \( - \frac{2}{3}\).            
C. \(0\).                    
D. \(1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có \(I = \lim \frac{{7{n^2} - 2{n^3} + 1}}{{3{n^3} + 2{n^2} + 1}} = \lim \frac{{\frac{7}{n} - 2 + \frac{1}{{{n^3}}}}}{{3 + \frac{2}{n} + \frac{1}{{{n^3}}}}} =  - \frac{2}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có: \(\lim \frac{1}{{2n + 7}}\)\( = \lim \frac{{\frac{1}{n}}}{{2 + \frac{7}{n}}} = 0\).

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

Ta có: \(0,212121 \ldots = 0,21 + 0,0021 + 0,000021 + \ldots \)

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \(\frac{1}{{100}}\).

Vì vậy \(0,212121 \ldots = 0,21 + 0,0021 + 0,000021 + \ldots = \frac{{0,21}}{{1 - \frac{1}{{100}}}} = \frac{7}{{33}}\).

Ta có: \(0,333 \ldots = 0,3 + 0,03 + 0,003 + \ldots \)

Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \(\frac{1}{{10}}\).

Vì vậy \(4,333 \ldots = 4 + 0,3 + 0,03 + 0,003 + \ldots = 4 + \frac{{0,3}}{{1 - \frac{1}{{10}}}} = \frac{{13}}{3}\).

Câu 6

A. \[L = - \infty \].    
B. \[L = - 2\].          
C. \[L = 1\].                             
D. \[L = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 2.                           
B. 0.                         
C. 1.                               
D. \(\frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP