Tính giới hạn \(L = \lim \frac{{2n + 1}}{{2 + n - {n^2}}}\)?
Câu hỏi trong đề: Đề kiểm tra Giới hạn của dãy số (có lời giải) !!
Quảng cáo
Trả lời:

Chọn D
Ta có: \(L = \lim \frac{{2n + 1}}{{2 + n - {n^2}}} = \lim \frac{{\frac{2}{n} + \frac{1}{{{n^2}}}}}{{\frac{2}{{{n^2}}} + \frac{1}{n} - 1}} = 0\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Ta có: \(\lim \frac{1}{{2n + 7}}\)\( = \lim \frac{{\frac{1}{n}}}{{2 + \frac{7}{n}}} = 0\).
Lời giải
\(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} - n} - \sqrt {{n^2} + 1} } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{ - n - 1}}{{\sqrt {{n^2} - n} + \sqrt {{n^2} + 1} }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{ - 1 - \frac{1}{n}}}{{\sqrt {1 - \frac{1}{n}} + \sqrt {1 + \frac{1}{{{n^2}}}} }} = - \frac{1}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.