Câu hỏi:

06/10/2025 56 Lưu

Giá trị của tham số \[a\] để hàm số \[y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 2} - 2}}{{x - 2}}{\rm{ khi }}x \ne 2\\a + 2x{\rm{ }}\,\,\,\,\,\,\,\,\,\,{\rm{khi }}x = 2\end{array} \right.\] liên tục tại \[x = 2\].

A. \(\frac{1}{4}\).     
B. \(1\).                    
C. \[ - \frac{{15}}{4}\].       
D. \(4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt {x + 2}  - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{x - 2}}{{\left( {x - 2} \right)\left( {\sqrt {x + 2}  + 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{1}{{\sqrt {x + 2}  + 2}} = \frac{1}{4}\].

Hàm số liên tục tại \[x = 2\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\]\[ \Leftrightarrow a + 4 = \frac{1}{4}\]\[ \Leftrightarrow a =  - \frac{{15}}{4}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số \(P(t)\) trên \((0;4]\) có công thức:

\(P(t) = \left\{ {\begin{array}{*{20}{l}}2&{{\rm{ khi }}}&{0 < t \le 1}\\3&{{\rm{ khi }}}&{1 < t \le 2}\\4&{{\rm{ khi }}}&{2 < t \le 3}\\5&{{\rm{ khi }}}&{3 < t \le 4}\end{array}} \right.\)(\(P\)tính theo chục nghìn đồng, \(t\) tính theo giờ).

Đồ thị của hàm số \(P(t)\) như Hình 1.

Tại một nhà gửi xe, phí gửi xe ô tô con được tính 20 nghìn đồng cho 1 giờ đầu và 10 nghìn đồng cho mỗi giờ tiếp theo. (ảnh 1)

Trên mỗi nữa khoảng \((0;1],(1;2],(2;3]\)\((3;4]\), hàm số đều có dạng \(P(t) = c\) (\[c\]là hằng số) nên hàm số liên tục trên mỗi khoảng này.

Ta có \(\mathop {\lim }\limits_{t \to {1^ - }} P(t) = \mathop {\lim }\limits_{t \to {1^ - }} 2 = 2;\mathop {\lim }\limits_{t \to {1^ + }} P(t) = \mathop {\lim }\limits_{t \to {1^ + }} 3 = 3\). Do \(\mathop {\lim }\limits_{t \to {1^ - }} P(t) \ne \mathop {\lim }\limits_{t \to {1^ + }} P(t)\) nên hàm số không liên tục tại điểm \(t = 1\).

Tương tự, chỉ ra được hàm số không liên tục tại các điểm \(t = 2\)\(t = 3\).

Vậy hàm số liên tục trên các nửa khoảng \((0;1],(1;2],(2;3]\)\[\left( {3;4} \right];\]gián đoạn tại các điểm \(t = 1,t = 2\)\(t = 3\).

Câu 2

A. \[m \ne 2.\]            
B. \[m \ne 1.\]          
C. \[m \ne 2.\]                             
D. \[m \ne 3.\]

Lời giải

Tập xác định của hàm số là \[\mathbb{R}.\]

Hàm số gián đoạn tại \[x = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) \ne f\left( 1 \right) \Leftrightarrow \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x - 2}}{{x - 1}} \ne 3m\]

\[ \Leftrightarrow \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}} \ne 3m \Leftrightarrow \mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) \ne 3m \Leftrightarrow 3 \ne 3m \Leftrightarrow m \ne 1.\]

Câu 3

A. \(m = 3.\)              
B. \(m = 1.\)            
C. \(m = 2.\)                             
D. \(m = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} & {\rm{khi}}\,x > 2\\\frac{{5x - 9}}{2} & & {\rm{khi}}\,x \le 2\end{array} \right.\)\(g(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x + 2} - 2}}{{2 - x}}}&{{\rm{ khi }}x > 2}\\{\frac{{1 - x}}{4}}&{{\rm{ khi }}x \le 2}\end{array}} \right.\).

Khi đó:

a) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).

b) Hàm số \(g\left( x \right)\) gián đoạn tại điểm \({x_0} = 2\).

c) Giới hạn\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \frac{1}{4}{\rm{. }}\)

d) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_0} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP