Tìm \(m\) để hàm số \[f(x) = \left\{ \begin{array}{l}\frac{{{x^2} + 4x + 3}}{{x + 1}}\,\,\,khi\,\,x > - 1\\mx + 2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le - 1\end{array} \right.\] liên tục tại điểm \(x = - 1\).
Câu hỏi trong đề: Đề kiểm tra Hàm số liên tục (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{{x^2} + 4x + 3}}{{x + 1}}\)\( = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{\left( {x + 1} \right)\left( {x + 3} \right)}}{{x + 1}}\)\( = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \left( {x + 3} \right)\)\( = 2\).
\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \left( {mx + 2} \right)\)\( = - m + 2\).
\(f\left( { - 1} \right) = - m + 2\).
Để hàm số đã cho liên tục tại điểm \(x = - 1\) thì \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} f\left( x \right) = f\left( { - 1} \right)\)\( \Leftrightarrow 2 = - m + 2\)\( \Leftrightarrow m = 0\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có: \(f\left( 3 \right) = m\).
\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 6{x^2} + 11x - 6}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \left( {{x^2} - 3x + 2} \right) = 2\).
Câu 2
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(x + 1)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} (x + 1) = 3.\)
Hàm số liên tục tại x=2 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow m = 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.