Tính \[\lim n\left( {\sqrt {4{n^2} + 3} - \sqrt[3]{{8{n^3} + n}}} \right)\].
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương V (có lời giải) !!
Quảng cáo
Trả lời:
Chọn D
Ta có: \[\lim n\left( {\sqrt {4{n^2} + 3} - \sqrt[3]{{8{n^3} + n}}} \right)\]\[ = \lim n\left[ {\left( {\sqrt {4{n^2} + 3} - 2n} \right) + \left( {2n - \sqrt[3]{{8{n^3} + n}}} \right)} \right]\]
\[ = \lim \left[ {n\left( {\sqrt {4{n^2} + 3} - 2n} \right) + n\left( {2n - \sqrt[3]{{8{n^3} + n}}} \right)} \right]\].
Ta có: \[\lim n\left( {\sqrt {4{n^2} + 3} - 2n} \right)\]\[ = \lim \frac{{3n}}{{\left( {\sqrt {4{n^2} + 3} + 2n} \right)}}\]\[ = \lim \frac{3}{{\left( {\sqrt {4 + \frac{3}{{{n^2}}}} + 2} \right)}} = \frac{3}{4}\].
Ta có: \[\lim n\left( {2n - \sqrt[3]{{8{n^3} + n}}} \right)\]\[ = \lim \frac{{ - {n^2}}}{{\left( {4{n^2} + 2n\sqrt[3]{{8{n^3} + n}} + \sqrt[3]{{{{\left( {8{n^3} + n} \right)}^2}}}} \right)}}\]
\[ = \lim \frac{{ - 1}}{{\left( {4 + 2\sqrt[3]{{8 + \frac{1}{{{n^2}}}}} + \sqrt[3]{{{{\left( {8 + \frac{1}{{{n^2}}}} \right)}^2}}}} \right)}} = - \frac{1}{{12}}\].
Vậy \[\lim n\left( {\sqrt {4{n^2} + 3} - \sqrt[3]{{8{n^3} + n}}} \right) = \frac{3}{4} - \frac{1}{{12}}\]\[ = \frac{2}{3}\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \(1 + 2 + 3 + ... + k\) là tổng của cấp số cộng có \({u_1} = 1\), \(d = 1\) nên \(1 + 2 + 3 + ... + k = \frac{{\left( {1 + k} \right)k}}{2}\)
\( \Rightarrow \frac{1}{{1 + 2 + ... + k}} = \frac{2}{{k\left( {k + 1} \right)}}\)\( = \frac{2}{k} - \frac{2}{{k + 1}}\), \(\forall k \in {\mathbb{N}^*}\).
\(L = \lim \left( {\frac{2}{1} - \frac{2}{2} + \frac{2}{2} - \frac{2}{3} + \frac{2}{3} - \frac{2}{4} + ... + \frac{2}{n} - \frac{2}{{n + 1}}} \right)\)\( = \lim \left( {\frac{2}{1} - \frac{2}{{n + 1}}} \right)\)\( = 2\).
Câu 2
Lời giải
Chọn A
Ta có \[\lim \frac{{2{n^3} + {n^2} - 4}}{{a{n^3} + 2}} = \lim \frac{{{n^3}\left( {2 + \frac{1}{n} - \frac{4}{{{n^3}}}} \right)}}{{{n^3}\left( {a + \frac{2}{{{n^3}}}} \right)}} = \frac{2}{a} = \frac{1}{2}\].
Suy ra \[a = 4\]. Khi đó \[a - {a^2} = 4 - {4^2} = - 12\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.