Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

Quảng cáo
Trả lời:
Chọn D
Cỡ mẫu \(n = 20\). Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\)là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{x_3} \in [2,7;3,0);{x_4}; \ldots ;{x_9} \in [3,0;3,3);{x_{10}}; \ldots ;{x_{14}} \in [3,3;3,6)\)
\({x_{15}}; \ldots ;{x_{18}} \in [3,6;3,9){\rm{;}}\,\,\,\,\,\,\,\,\,\,\,\,{x_{19}};{x_{20}} \in [3,9;4,2).\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [3,0;3,3)\).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 3,0 + \frac{{\frac{{20}}{4} - 3}}{6}(3,3 - 3,0) = 3,1\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in \left[ {3,6;3,9} \right)\).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 3,6 + \frac{{\frac{{3.20}}{4} - \left( {3 + 6 + 5} \right)}}{4}\left( {3,9 - 3,6} \right) = 3,675\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 0,575\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cỡ của mẫu số liệu là: \(n = 15 + 10 + 5 + 2 = 32.\)
a) Đúng. Giá trị đại diện của nhóm thứ I, II, III, IV theo chiều từ trái sang phải lần lượt là:
\({x_1} = \frac{{0 + 10}}{2} = 5,\) \({x_2} = \frac{{10 + 20}}{2} = 15,\)\({x_3} = \frac{{20 + 30}}{2} = 25,\)\({x_4} = \frac{{30 + 40}}{2} = 35.\)
b) Sai. Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là:
\(\bar x = \frac{1}{{32}}\left( {15.5 + 10.15 + 5.25 + 2.35} \right) = 13,125.\)
c) Đúng. Phương sai của mẫu số liệu trên là
\({s^2} = \frac{1}{{32}}\left[ {15.{{\left( 5 \right)}^2} + 10.{{\left( {15} \right)}^2} + 5.{{\left( {25} \right)}^2} + 2.{{\left( {35} \right)}^2}} \right] - {\left( {13,125} \right)^2} \approx 251.\)
d) Sai. Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx \sqrt {251} \approx 15,8.\)Câu 2
Lời giải
Chọn A
Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:
\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).
Phương sai của mẫu số liệu là:
\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).
Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





