Thống kê thời gian dùng Facebook trong một ngày của các bạn trong Lớp 12C1 được kết quả ghép nhóm như sau:

a) Giá trị đại diện của nhóm thứ nhất theo chiều từ trái sang phải là 5.
b) Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là 12.
c) Phương sai của mẫu số liệu trên gần bằng 251.
d) Độ lệch chuẩn của mẫu số liệu trên là 15.
Thống kê thời gian dùng Facebook trong một ngày của các bạn trong Lớp 12C1 được kết quả ghép nhóm như sau:

a) Giá trị đại diện của nhóm thứ nhất theo chiều từ trái sang phải là 5.
b) Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là 12.
c) Phương sai của mẫu số liệu trên gần bằng 251.
d) Độ lệch chuẩn của mẫu số liệu trên là 15.
Quảng cáo
Trả lời:
Cỡ của mẫu số liệu là: \(n = 15 + 10 + 5 + 2 = 32.\)
a) Đúng. Giá trị đại diện của nhóm thứ I, II, III, IV theo chiều từ trái sang phải lần lượt là:
\({x_1} = \frac{{0 + 10}}{2} = 5,\) \({x_2} = \frac{{10 + 20}}{2} = 15,\)\({x_3} = \frac{{20 + 30}}{2} = 25,\)\({x_4} = \frac{{30 + 40}}{2} = 35.\)
b) Sai. Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là:
\(\bar x = \frac{1}{{32}}\left( {15.5 + 10.15 + 5.25 + 2.35} \right) = 13,125.\)
c) Đúng. Phương sai của mẫu số liệu trên là
\({s^2} = \frac{1}{{32}}\left[ {15.{{\left( 5 \right)}^2} + 10.{{\left( {15} \right)}^2} + 5.{{\left( {25} \right)}^2} + 2.{{\left( {35} \right)}^2}} \right] - {\left( {13,125} \right)^2} \approx 251.\)
d) Sai. Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx \sqrt {251} \approx 15,8.\)Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:
\(\overline x = \frac{{10.5 + 30.9 + 50.12 + 70.10 + 90.6}}{{42}} = \frac{{360}}{7} = 51,42857143\).
Phương sai của mẫu số liệu là:
\({S^2} = \frac{{{{5.10}^2} + {{9.30}^2} + {{12.50}^2} + {{10.70}^2} + {{6.90}^2}}}{{42}} - {\left( {\frac{{360}}{7}} \right)^2} = \frac{{29300}}{{49}} = 597,9591837 \approx 598\).
Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là \({S^2} \approx 598\).Lời giải
Bổ sung thêm các giá trị đại diện, ta lập được bảng sau:
|
Nhóm |
\({{\bf{c}}_{\bf{i}}}\) |
\({{\bf{n}}_{\bf{i}}}\) |
|
\([44;46)\) |
45 |
3 |
|
\([46;48)\) |
47 |
3 |
|
\([48;50)\) |
49 |
10 |
|
\([50;52)\) |
51 |
15 |
|
\([52;54)\) |
53 |
7 |
|
\([54;56)\) |
55 |
2 |
|
|
|
\(N = 40\) |
Từ mẫu số liệu đã cho, ta tính được số trung bình là:
\(\bar x = \frac{{3.45 + 3.47 + 10.49 + 15.51 + 7.53 + 2.55}}{{40}} = \frac{{2012}}{{40}} = 50,3\).
\(\bar x\) không phải là số nguyên nên để tính phương sai ta tính:
\(\overline {{x^2}} = \frac{{{{3.45}^2} + {{3.47}^2} + {{10.49}^2} + {{15.51}^2} + {{7.53}^2} + {{2.55}^2}}}{{40}} = 2536.\)
Do đó \({s^2} = \overline {{x^2}} - {(\bar x)^2} = 2536 - 50,{3^2} = 2536 - 2530,09 = 5,91\).
Vậy mẫu số liệu về chiều dài của 40 trẻ sơ sinh có độ lệch chuẩn là \(s = \sqrt {5,91} \approx 2,43\).
Đáp án: 2,43.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





