Câu hỏi:

07/10/2025 171 Lưu

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành, trục tung và đường thẳng \(x = a\), \(a > 0\) (phần tô đậm trong hình vẽ) được tính theo công thức

Chọn A  Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f (ảnh 1)

A. \(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} - \int\limits_a^c {f\left( x \right){\rm{d}}x} \).    
B. \(S = - \int\limits_0^a {f\left( x \right){\rm{d}}x} \).
C. \(S = - \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).   
D. \(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f\left( x \right)} \right|{\rm{d}}x}  = \int\limits_0^c {\left| {f\left( x \right)} \right|{\rm{d}}x}  + \int\limits_c^a {\left| {f\left( x \right)} \right|{\rm{d}}x}  = \int\limits_0^c {f\left( x \right){\rm{d}}x}  - \int\limits_a^c {f\left( x \right){\rm{d}}x} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} } \).

Vậy hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k.\sqrt t \).

b) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} }  = \frac{{2k}}{3}.t\sqrt t  + C\), với \(0 \le t \le 24\) và \(k,\,\,C\) là các hằng số.

c) Sai. Do ban đầu bể chứa dầu ban đầu có \(50000\) lít dầu nên \(V\left( 0 \right) = 50\,000 \Rightarrow C = 50\,000\).

Mặt khác sau 4 giờ bơm liên tục, thể tích dầu trong bể đạt \(58000\) lít nên ta có:

\(V\left( 4 \right) = \frac{{2k}}{3}.4\sqrt 4  + 50000 = 58000 \Leftrightarrow k = 1500\).

Vậy \(V\left( t \right) = 1\,000.t\sqrt t  + 50\,000\).

Sau 16 giờ bơm liên tục, thể tích dầu trong bể đạt được:

\(V\left( {16} \right) = 1\,000.16\sqrt 6  + 50\,000 = 114\,000\) lít.

d) Đúng. Trong quá trình bơm dầu, nếu sau mỗi giờ lượng dầu bị rò rỉ đều đặn với tốc độ \(500\) lít/giờ, thì tại thời điểm \(t\) bằng 9 giờ, thể tích dầu trong bể là

\(V\left( 9 \right) = 1\,000.9\sqrt 9  + 50\,000 - 500.9 = 72\,500\) lít.

Lời giải

Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t}  = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t}  = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).

Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ

Một chiếc đồng hồ cát như hình vẽ gồm hai phần đối xứng nhau qua mặt phẳng nằm ngang và đặt trong một hình trụ. Thiết diện thẳng đứng qua trục của nó là hai parabol chung đỉnh và đối xứng nhau qua mặt phẳng nằm ngang.  (ảnh 2)

Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4  \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).

Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x}  = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).

Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).

Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).

Đáp án: 21.

Câu 3

A. \(f\left( 2 \right) = - 4\).                                
B. \(f\left( 2 \right) = - 2\).                
C. \(f\left( 2 \right) = 4\).                                   
D. \(f\left( 2 \right) = - 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\int {2025\sin x\,{\rm{d}}x} = \sin 2025x + C\).                                  
B. \(\int {2025\sin x\,{\rm{d}}x} = {\sin ^{2025}}x + C\).    
C. \(\int {2025\sin x\,{\rm{d}}x} = - 2025\cos x + C\).                                  
D. \(\int {2025\sin x\,{\rm{d}}x} = 2025\cos x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP