Phần 3. Trắc nghiệm trả lời ngắn
Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?
Phần 3. Trắc nghiệm trả lời ngắn
Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?Quảng cáo
Trả lời:
Khi xe dừng hẳn thì vận tốc bằng 0, do đó \( - 4t + 20 = 0 \Leftrightarrow t = 5\) (giây).
Từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường là:
\(S = \int\limits_0^5 {v\left( t \right){\rm{d}}t} = \int\limits_0^5 {\left( { - 4t + 20} \right){\rm{d}}t} = 50\) (mét).
Đáp án: 50.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t} = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t} = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).
Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ

Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4 \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).
Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:
\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x} = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).
Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).
Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).
Đáp án: 21.
Câu 2
Lời giải
Chọn A
Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f\left( x \right)} \right|{\rm{d}}x} = \int\limits_0^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^a {\left| {f\left( x \right)} \right|{\rm{d}}x} = \int\limits_0^c {f\left( x \right){\rm{d}}x} - \int\limits_a^c {f\left( x \right){\rm{d}}x} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

