Phần 3. Trắc nghiệm trả lời ngắn
Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?
Phần 3. Trắc nghiệm trả lời ngắn
Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?Quảng cáo
Trả lời:

Khi xe dừng hẳn thì vận tốc bằng 0, do đó \( - 4t + 20 = 0 \Leftrightarrow t = 5\) (giây).
Từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường là:
\(S = \int\limits_0^5 {v\left( t \right){\rm{d}}t} = \int\limits_0^5 {\left( { - 4t + 20} \right){\rm{d}}t} = 50\) (mét).
Đáp án: 50.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t} = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t} = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).
Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ
Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4 \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).
Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:
\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x} = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).
Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).
Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).
Đáp án: 21.
Lời giải
a) Đúng.
b) Đúng. \[\int {v\left( t \right){\rm{dt}}} = \int {\left( { - 10t + 20} \right)\,{\rm{dt}}} = - 5{t^2} + 20t + C\].
Suy ra: \[S\left( t \right) = - 5{t^2} + 20t + C\]; \[S\left( 0 \right) = 0\]\[ \Rightarrow C = 0\]\[ \Rightarrow S\left( t \right) = - 5{t^2} + 20t\].
c) Sai. Ô tô dừng hẳn khi \[v\left( t \right) = 0\]\[ \Leftrightarrow t = 2\].
d) Đúng. \[65\,{\rm{km/h}}\,{\rm{ = }}\,\,\frac{{325}}{{18}}\,{\rm{m/s}}\].
Người lái xe phản ứng một giây khi phát hiện chướng ngại vật, sau giây đó ô tô đi được \[\frac{{325}}{{18}}\,\left( {\rm{m}} \right).\]
Quãng đường ô tô đi được kể từ lúc đạp phanh đến khi ô tô dừng hẳn là:
\[S\left( 2 \right) = - {5.2^2} + 20.2 = 20\,\left( {\rm{m}} \right)\].
Vậy quãng đường ô tô đi được kể từ lúc phát hiện chướng ngại vật đến khi ô tô dừng hẳn là:
\[\frac{{325}}{{18}} + 20 = \frac{{685}}{{18}}\,\left( {\rm{m}} \right) < 50\,\left( {\rm{m}} \right)\]. Suy ra, ô tô không va chạm vào chướng ngại vật trên đường.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.